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Zusammenfassung

Die Natur der Dunklen Materie bleibt eines der faszinierendsten Rätsel der Physik.
Während das Standardmodell der Kosmologie Kalte Dunkle Materie (CDM) favorisiert,
haben potenzielle Diskrepanzen auf kleinen Skalen das Interesse an alternativen Kandi-
daten wie Warmer Dunkler Materie (WDM) geweckt. Diese Arbeit stellt einen neuar-
tigen Ansatz vor, um die Massen von WDM-Teilchen mithilfe des Lyman-α-Walds,
einem wichtigen Instrument zur Untersuchung des intergalaktischen Mediums (IGM),
das in den Spektren von Quasaren beobachtet wird, einzuschränken. Unter Verwendung
hochauflösender kosmologischer Simulationen aus der Sherwood-Reihe simulieren wir
den Lyman-α-Wald für verschiedene WDM-Szenarien. Wir stellen ein Deep-Learning-
Framework vor, das das Dichtefeld des neutralen Wasserstoffs direkt aus dem Lyman-
α-Fluss rekonstruiert und die komplexen Effekte von WDM auf das IGM erfasst.
Diese rekonstruierten Dichtefelder bilden die Grundlage für ein Inferenzmodell, das
es uns ermöglicht, die Massen von WDM-Teilchen auf eine bisher unerforschte Weise
einzuschränken. Wir testen dieses Modell umfassend an simulierten Daten und wenden
es anschließend auf reale Beobachtungen vom UltraViolet-Visual Echelle Spectrograph
des Very Large Telescope und dem Gemini High-resolution Optical SpecTrograph des
Gemini-South-Telescope an. Unsere Ergebnisse reproduzieren die modernsten WDM-
Einschränkungen, während sie deutlich weniger Beobachtungsdaten erfordern, was die
Wirksamkeit des maschinellen Lernens in der modernen kosmologischen Forschung zeigt.

Abstract

The nature of dark matter remains one of the most compelling mysteries in physics.
While the standard cosmological model favours the Cold Dark Matter (CDM) paradigm,
potential discrepancies at small scales have sparked interest in alternative candidates
like Warm Dark Matter (WDM). This thesis presents a novel approach to constrain
WDM particle masses using the Lyman-α forest, an important probe of the intergalactic
medium (IGM) observed in the spectra of quasars. Leveraging high-resolution cosmolog-
ical simulations from the Sherwood suite, we explore the effect of different WDM models
on the Lyman-α forest. We introduce a deep-learning framework that reconstructs the
neutral hydrogen density field directly from the Lyman-α flux, capturing the intricate
effects of WDM on the IGM. These recovered density fields serve as the foundation for
an inference pipeline, enabling us to constrain WDM particle masses in a previously
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unexplored manner. We extensively test this pipeline on simulated data, then apply it
to real observations from the UltraViolet-Visual Echelle Spectrograph at the Very Large
Telescope and the Gemini High-resolution Optical SpecTrograph at the Gemini South
telescope. Our findings are able to reproduce state-of-the-art WDM constraints while
requiring significantly less observational data, demonstrating the efficacy of machine
learning in modern cosmological research.
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1 Introduction

1.1 Cosmological preliminaries

The currently accepted cosmological model describes space-time as a 4-dimensional
Lorentzian manifold equipped with the Robertson-Walker metric [1]

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
, (1.1)

with c the speed of light in a vacuum, a the scale factor, k a curvature parameter and
dΩ the angular volume element in spherical coordinates. The scale factor is taken to
be unity at present. At time t, a physical (proper) distance lphy is then related to a
comoving distance χ by

lphy = a(t)χ. (1.2)

The physical distance at time t between an observer at r = 0 and a point at r is then

lphy = a(t)

∫ r

0

dr√
1− kr2

= a(t)χ(r). (1.3)

The Robertson-Walker metric implies that for a radial luminous signal emitted at time
te and received at time t0, we have

ds2 = 0 =⇒ dt0
a(t0)

=
dte
a(te)

. (1.4)

As a consequence, the received frequency is redshifted according to

1 + z =
λ0

λe

=
νe
ν0

=
a(t0)

a(te)
, (1.5)

where z is the redshift.
The time-dependence of physical distances in Equation 1.2 implies that an object

whose comoving distance χ to an observer is constant recedes by following the Hubble
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1 Introduction

flow according to

v(t) = ȧ(t)χ =
ȧ

a
aχ = H(t)lphy, (1.6)

where H(t) is known as the Hubble factor. Equation 1.6 is known as Hubble’s law. At
present time, H(t0) = H0 is referred to as Hubble’s constant. For historical reasons,
it is common to work with the reduced Hubble constant h = H0[km/s/Mpc]/100. The
velocity of an object, neglecting its recession due to Hubble’s law, is known as the
peculiar velocity. Note that, according to Equation 1.3, and using the Robertson-Walker
metric for a radial light signal, we obtain

dχ =
cdt

a
=⇒ χ =

∫ 1

a

da

aȧ
=

∫ z

0

cdz

H(z)
. (1.7)

As a consequence, the proper line element satisfies

dχ =
cdz

H(z)
=

dlphy

a(t)
=⇒ dlphy

dz
=

c

(1 + z)H(z)
, (1.8)

which will be useful when integrating quantities along a line of sight. When working
with such sightlines in spectroscopy, it is often advantageous to work with velocity units
instead of redshifts (or proper distances). Differentiating Equation 1.6 and considering
a slow varying Hubble factor around a mean redshift z, we obtain the following useful
expression:

dv = H(z)dl = H(z)
cdz

(1 + z)H(z)
=

cdz

1 + z
. (1.9)

The evolution of the scale factor (and hence of the redshift) with time is completely
determined by the energy content of the Universe through Einstein’s field equation,
which is known as Friedmann’s equation in this context

H2 = H2
0

(
ΩM(1 + z)3 + ΩR(1 + z)3 + ΩΛ + ΩK(1 + z)2

)
= H2

0E(z)2, (1.10)

where the density parameters Ω are related to the physical densities of the components

2



1.2 The intergalactic medium

according to

ΩM =
8πG

3H2
0

ρM0

ΩR =
8πG

3H2
0

ρR0

ΩΛ =
8πG

3H2
0

ρΛ

ΩK = − k

H2
0

(1.11)

In Equation 1.11, ρM denotes the matter density of the universe, ρR the radiation density,
and ρΛ the dark energy component. In the following, the values used for the cosmological
parameters are ΩM = 0.308,ΩΛ = 0.692, h = 0.678,Ωb = 0.0482, σ8 = 0.829, n = 0.961

and ΩK ≈ 0, as obtained from CMB measurements by the Planck Collaboration [2].
As we will discuss in Section 1.3, the current cosmological model ΛCDM includes a
cold dark matter component that dominates over baryonic matter. With the previous
cosmological parameters, the matter and cosmological constant are equal when

ΩM(1 + z)3 = ΩΛ =⇒ z ≈ 0.3. (1.12)

In consequence, at the redshift of interest for this work, z ∼ 4 − 5, the Universe is
well-described as matter-dominated.

1.2 The intergalactic medium

As the name suggests, the intergalactic medium (IGM) is the low-density part of the
Universe’s content that permeates the space between halos and galaxies [3]. The history
of the IGM is closely related to the formation and evolution of galaxies, with multiple
feedback mechanisms. For instance, IGM gas can aggregate and provide material to be
captured by halos, while the radiation emitted by stars and quasars affects the state of
the IGM. At sufficiently early times, all baryons were by definition part of the IGM, so
the IGM represents the primordial material for galaxy formation. Since the IGM has
very low densities, its properties are typically probed by the absorption of light coming
from background sources, such as quasars. To give a rough overview of the properties
of the IGM, its typical temperature is ∼ 104 K (but can vary by a factor > 10), with
peculiar velocities of ∼ 10− 100 km/s and neutral hydrogen densities of ∼ 10−10 cm−3

(but can vary by a factor > 10).
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1 Introduction

One of the most relevant processes in the IGM is ionisation. Consider the hydrogen
recombination process:

p+ + e− ←→ H + γ

The total ionisation process has two main contributions: collisional ionisation and photo-
ionisation. Collisional ionisation tends to be non-dominant and is due to the collision
of an energetic electron with a neutral hydrogen atom. Let Γc be the collisional rate,
so that the number of collisional ionisation per unit volume per unit time is Γcne−nHI,
where n denotes a physical number density. Photo-ionisation is the dominant process
and arises from an energetic photon colliding with a neutral hydrogen atom. Let J be
the flux of ionising photons, then the number of photo-ionisations per volume per time
is ΓinHI where

Γi =

∫ ∞

νt

4πJ(ν)

chPν
cσ(ν) d ν (1.13)

and νt is the threshold frequency for ionising photons (so, the Rydberg energy). If α is
the recombination rate, the number of recombinations per time per volume is αnp+ne− .
The equilibrium equation is then

αnp+ne− = ΓinHI + Γcne−nHI. (1.14)

And so, the neutral hydrogen number density at equilibrium must be:

nHI =
αnp+ne−

Γcne− + Γi

. (1.15)

Note that here np+ is the density of free protons. If the gas is highly ionised we can take
ne− = nHI + np+ ≈ np+ and so, neglecting the collision part:

nHI =
αn2

p+

Γi

. (1.16)

In a dynamic universe, the equilibrium holds provided that the reaction rates are suffi-
ciently large compared to the expansion time-scale H−1. Since photo-ionisation domi-
nates, this can be expressed as

H(z) << Γi(z), (1.17)

where Γi depends on the ionising photon flux, and so depends on redshift.

Considering that the IGM is made out of fully ionised hydrogen and helium and
neglecting metals and deuterium, we have that:
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1.2 The intergalactic medium

np = nH + 2nHe nn = 2nHe. (1.18)

The helium weight fraction is then defined as

Y =
mHe

mHe +mH

≈ 4nHe

4nHe + nH

=
2nn

nn + np

=
2nn/np

1 + nn/np

≈ 0.25. (1.19)

The IGM also contains helium and a small fraction of metals, that contribute to its
absorption properties [4].

We are generally interested in matter fluctuations of the IGM. Hence, we define the
following quantity of interest, called the baryonic overdensity field, as

∆ =
ρ

ρ̄
, (1.20)

where ρ(ρ̄) is the (mean) baryonic density. Let us recover the hydrogen density nH from
the baryonic overdensity ∆, the redshift z and the density parameter Ωb. First, suppose
there is no overdensity so that ∆ = 1 and the comoving density is homogeneous. Recall
from the mean molecular weight section that

µH =
1

1− Y
=

4

3
=

ρ

mpnH

(1.21)

and that
ρb =

3H2

8πG
Ωb, (1.22)

so that
nH =

9H2Ωb

32mpπG
. (1.23)

Now, in a matter-dominated universe (for the redshifts we are interested in), the Fried-
mann equation states H2 = H2

0 (1 + z)3. So, we obtain,

nH =
9

32mpπG
H2

0Ωb(1 + z)3 (1.24)

and substituting values,
nH = 1.7 · 10−7(1 + z)3cm−3. (1.25)

Now if, the hydrogen density is not homogeneous (that is, ∆ ̸= 1), nH will be locally
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1 Introduction

modulated by ∆, so that

nH = 1.7 · 10−7(1 + z)3∆cm−3. (1.26)

Since cosmological simulations typically produce as output the baryonic overdensity ∆,
we can use Equation 1.26 to recover the corresponding hydrogen density.

The hydrogen Lyman-α absorption lines in the spectra of quasars allow us to probe
the state of the IGM. In particular, the Lyman-α optical depth can then be used to
estimate the average neutral hydrogen fraction xHI. The evolution of the observed
Lyman-α optical depth indicates that the IGM is highly ionised at z ⪅ 5.5, [5], [6]. The
two main sources of UV ionising photons are believed to be young galaxies and quasars.

An important aspect of the state of the IGM is the relation between the temperature
T and baryonic overdensity ∆. For the photoionised IGM in a low-density regime, the
temperature-density relation is well-approximated by a simple power law [7]:

T = T0∆
γ−1, (1.27)

where T0 is the temperature at mean density and γ is the slope of the relation. T0 and
γ are two relevant parameters that characterise the thermal state of the IGM. The state
of the IGM depends in a highly non-trivial way on its evolution and interaction with the
rest of the components of the Universe. If no other process were present, the Hubble
expansion would adiabatically cool down the IGM. However, there are mechanisms that
perturb, heat and enrich the IGM. For instance, shocks can heat the IGM by means
of gravitational collapse and explosions from supernovae and stars [8]. In the case of
gravitational collapse, the gas is shock-heated and thermalises at the virial temperature
of the corresponding structure. In the case of stars, the total kinetic energy associated
with supernova explosions is comparable to the binding energy of IGM gas. The evolu-
tion of the IGM is heavily impacted by the process of reionisation [9]. Reionisation is
the process of ionising the IGM by UV photons emitted from ionising sources such as
young stars and AGNs. Initially, this process creates ionised bubbles around the ionising
sources. The ionised regions start to percolate, and reionisation ends in a phase where
the Universe is completely ionised around z ∼ 6. Reionisation is extremely complicated
to model since it includes multiple processes that are not fully constrained. It depends
on the specific nature of the sources, such as their luminosity function, distribution in
the Universe, evolution, etc. But it also depends on the topology of the ionised regions
within the IGM, the escape fraction of ionising photons into the latter, the mean free
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1.2 The intergalactic medium

Figure 1.1: Illustration of the Lyman-α absorption by neutral hydrogen at z = zα in the
line of sight of a QSO at z = zQSO. In the observer’s rest frame, the observed
frequency is νo. The associated frequency emitted by the QSO is νe.

path of photons [10], the cooling process and others. As a consequence, Equation 1.27 is
only an approximation of how the low-density IGM behaves. Recently, machine learn-
ing techniques have found success in reconstructing the thermal state of the IGM from
the Lyman-α forest [11]. This allows for a much more precise analysis of the thermal
evolution of the IGM and to constrain T0 and γ with increased efficiency. Ultimately,
the success in this endeavour has motivated this work.

Let us now describe how an intergalactic cloud (with no peculiar velocity) along the
line of sight of a quasar affects its spectrum, allowing for a powerful probing mechanism
of the IGM gas properties. Consider the situation illustrated in Figure 1.1, where a QSO
at redshift zQSO emits photons, and consider the propagation of an emitted photon with
rest-frame frequency νe. Those photons are redshifted and are absorbed in zα by a
neutral hydrogen absorber with local number density n(zα) producing an absorption
feature in the flux at the rest-frame Lyman-α resonance λα ≈ 1215Å. The unabsorbed
photons are then redshifted and are detected by an observer at z = 0 and a frequency
νo. The relationship between the frequencies mentioned above is then:

νo =
νe

1 + ze
=

να
1 + zα

. (1.28)

We are interested in studying the effect of the Lyman-α absorbed at zα. The observed
flux attenuation at the observed frequency ν0 is then expressed as exp(−τα), with τα the
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1 Introduction

Lyman-α opacity at the observed frequency, which depends on the absorber’s density
and the Lyman-α cross-section σα(ν). Observe now that since the Lyman-α cross-section
is strongly peaked at the resonance να, but can have a non-zero width, a nearby neutral
hydrogen cloud might absorb photons at a redshift different to zα that would have
contributed to the observed flux at frequency νo. With this consideration, we integrate
over the line of sight to obtain the Lyman-α opacity at the observed frequency

τα(νo) =

∫ zQSO

o

nHI(z)σα[νo(1 + z)]dz. (1.29)

If we now take σα(ν) to be a Dirac delta centered at the resonance να, and we integrate
Equation 1.29 by using Equation 1.8 we obtain

τα(νo) ≈
cnHI(zα)σα

H0Ω
1/2
m (1 + z)1/3

, (1.30)

where now σα = 4.5 × 10−18cm2 is the total Lyman-α cross-section. Equation 1.30 is
known as the Gunn-Peterson approximation for the Lyman-α opacity of the IGM [12].
Equation 1.30 demonstrates that quasar spectra are a useful probe of the intergalactic
neutral hydrogen density.

A more precise analysis of Equation 1.29 can be done if we do not approximate
σα as a Dirac delta. Instead, we can include the two main broadening effects in the
absorption cross-section: the natural broadening and the thermal broadening. The
natural broadening is a result of quantum processes and generates a Lorentzian profile,
while the thermal one is due to the microscopic Doppler effect of thermal motion and
generates a Gaussian profile. The resulting convolution of both the Lorentzian and
Gaussian profiles is known as a Voigt profile. It is a non-analytical function with a
Gaussian-like shape but heavier tails:

V (x, y) =
Y

π

∫ ∞

−∞

e−t2

(x− t)2 + y2
dt. (1.31)

The Lyman-α absorption cross-section described by the Voigt profile is then

σα(ν) =
cIα
b
√
π
V

(
x(ν − να)

bνα
, α

)
, (1.32)

where b =
√
2kBT
mp

is the Doppler parameter at temperature T , να ≈ 2.47 × 1015 Hz is
the Lyman-α frequency, Iα ≈ 4.45 × 10−18 cm2 is the total absorption cross-section [3]
and α is the recombination coefficient, which also depends on the temperature. The
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1.3 Dark matter

Lyman-α cross-section is then peaked at the resonant frequency, and broadened by the
temperature and the recombination rate. Now, consider a sightline of gas absorbing
Lyman-α photons. Peculiar bulk velocities v of the gas will add an additional Doppler
effect in the cross-section as

σα(ν) =
cIα
b
√
π
V

(
x(ν − να)

bνα
+

v

b
, α

)
. (1.33)

We can now integrate Equation 1.33 along the sightline to obtain the Lyman-α opacity
τ as

τ =

∫
n(t)σα(ναa(t0)/a(t))dt, (1.34)

where n is the neutral hydrogen density and t0 the emisison time. Recalling that the
comoving distance x is related to redshift and time as

dx =
c

H(z)
dz = c(1 + z)dt, (1.35)

we get that the Lyman-α optical depth τ can be obtained from the neutral hydrogen
gas properties along the sightline as follows:

τ(z0) =
cIα√
π

∫
dx

nHI[x, z(x)]

b[x, z(x)][1 + z(x)]
× V

(
c[z(x)− z0]

b[x, z(x)](1 + z0)
+

v[x, z(x)]

b[x, z(x)]
, α

)
(1.36)

where b =
√

2kBT
mp

, v is the peculiar velocity along the sightline, mp is the proton mass,
kB is Boltzmann’s constant, c is the speed of light, Iα is the total cross-section for
Lyman-α absorption and V is the Voigt function [13]. Since the Lyman-α flux field

F = e−τ

depends on the properties of the absorbing gas, it contains information about the state of
the IGM. The set of Lyman-α absorption features on the spectrum of a quasar is known
as the Lyman-α forest. In Figure 1.2 we show the spectrum of the quasar J1422+23,
taken with the Keck HIRES instrument, and featuring a Lyman-α forest.

1.3 Dark matter

There are multiple pieces of evidence supporting the inclusion of a dark matter com-
ponent, including the rotation curves of spiral galaxies and the kinematics of colliding
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1 Introduction

Figure 1.2: High resolution (FWHM ∼ 6.6 km/s) spectrum of the z = 3.62 quasar
1422+23, taken with the Keck HIRES (signal-to-noise ratio ∼ 150 per res-
olution element, exposure time 25000 s). The horizontal axis is in units of
observed wavelength in angstroms. Extracted from [14].

clusters such as the Bullet cluster [15], [16]. The standard cosmological model, ΛCDM,
includes a cold dark matter (CDM) sector that represents ∼ 26% of the critical den-
sity [2] and is an important ingredient for structure formation in the Early Universe.
However, its precise nature remains an outstanding problem both in cosmology and par-
ticle physics. With more exotic DM candidates, such as primordial black holes, heavily
constrained, it is likely that DM consists of some undiscovered elementary particle(s)
produced early in the history of the Universe [17].

According to the current paradigm [3], dark matter halos are the structures that host
galaxies. They form through the gravitational collapse of non-linear perturbations in
the primordial density field that serve as the first seeds for the formation of structures.
Dark matter halos then grow by accreting material from their surrounding (such as the
IGM). The properties of dark matter have then a direct influence on the properties of
galaxies (formation, clustering, merging, etc.) and in the general distribution of matter
in the Universe.

The evolution of the primordial fluctuations is not only determined by the gravita-
tional clumping of matter but also by the effect of random particle motions, which leads
to a damping of the density peaks and perturbations. The scale at which this happens is
set by the free-streaming length defined as the comoving distance travelled by a particle
before a time t:

λFS =

∫ t

0

v(t′)

a(t′)
dt′. (1.37)

ΛCDM models dark matter as pressureless and only interacting through gravity. More-
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1.3 Dark matter

over, CDM decouples from the primordial plasma when it is already non-relativistic. As
a consequence, CDM has no significant amount of free-streaming, and (thermal)pressure
does not hinder its clustering, which enables the formation of large hallos that can be
as massive as 1015 M⊙.

On large scales, the predictions of ΛCDM have been amply tested and are in good
agreement with observations [18], [19], [20]. In contrast, on scales smaller than ∼ 10 kpc,
potential tensions between CDM predictions and observations might exist, including the
“core-cusp” problem related to the DM density profile in halos, or the “too big to fail”
problem linked to the number density of high-luminosity satellites in sub-halos [21],
[22], [23]. Even if the inclusion of complex baryonic feedback processes can alleviate the
aforementioned potential discrepancies, alternative models to CDM are worth exploring
[24].

As a consequence of these possible tensions, there have been a multitude of DM
candidates to CDM. Such variations have included self-interactions [25] and fuzzy DM
which leads to wave-like features in the density fields [26]. Most alternative models
retain the success of CDM on large scales while reproducing the desired features on
smaller scales. Simulating how variations of CDM affect the evolution of structures in the
Universe is highly non-trivial. Perhaps the simplest models that are viable to explore are
warm (hot) dark matter WDM (HDM). Such candidates are usually classified according
to their free-streaming scales. While for CDM particles λFS is negligible at the scales of
cosmological structure formation, for HDM models, such as light neutrinos, λFS smoothes
out gravitational clustering even at galaxy cluster scales, leading to tight constraints on
such models [27]. In between HDM and CDM, WDM offers an intermediate range of
free-streaming scales that could potentially be compatible with the observed evolution
of the Universe. In this work, we focus on thermal relic WDM models, which include
potential particles such as gravitinos or sterile neutrinos that were coupled to the original
plasma in the Early Universe [28]. For such models, WDM is a particle of mass in the
scale of the KeV. A WDM particle with a mass of 1 KeV would have a free-streaming
scale of λFS ∼ 0.3 Mpc. In general, more massive particles are associated with smaller
velocities and hence smaller λFS. The nature of WDM suppresses the total matter power
spectrum on scales smaller than their free-streaming. That is, the less massive a WDM
model is, the more the power spectrum is suppressed at small scales, and the more
the density features of the density field are smoothed out. To illustrate this process,
consider Figure 1.3, which shows a simulated density field as a function of redshift, and
the WDM model mass. On the horizontal axis, the time evolution shows how gravity
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collapses dense regions into structures. On the vertical axis, the WDM free-streaming
length suppresses small-scale clustering.

Figure 1.3: Baryonic density plot of the IGM as a function of redshift, and the WDM
model mass. On the horizontal axis, the time evolution shows how gravity
collapses dense regions into structures. On the vertical axis, the WDM free-
streaming length suppresses small-scale clustering. Extracted from [29].

Constraining WDM in the cosmological context involves understanding and determin-
ing which WDM model masses are compatible with the universe we observe. Since the
effect of WDM on structure formation is too complex, this process typically involves
comparing simulations with observations: cosmological simulations are run for multiple
WDM models, and the resulting properties are statistically compared to observations to
rule out a certain range of masses. In Section 2 we discuss how such simulations work
and how WDM models are included in them.
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1.4 Structure of this work

Observations that have been used to constrain DM models include gravitational lens-
ing [30], [17] or the study of dwarf galaxies [31]. In this work, we focus on the Lyman-α
forest that was introduced in Section 1.2. As we have discussed, the properties of the
Lyman-α forest depend on the properties of the IGM, and in particular on its matter
distribution, which is directly linked with the WDM particle mass. Many efforts have
been made to constrain WDM by comparing the Lyman-α forest generated by WDM
models to the observed one in quasar spectra [32], [29], [28].

1.4 Structure of this work

Building on previous efforts in the literature (most notably [11]), in this work we explore
the possibility of reconstructing the neutral hydrogen density field directly from the
Lyman-α forest and whether such information can be used to constrain WDM. This
reconstruction step involves careful analysis and represents a challenge at the frontier
of the current efforts by the community. While the current state-of-the-art techniques
extract information from the Lyman-α forest by using summary statistics, recovering
the non-observable physical fields of relevance would allow for the extraction of all the
richness of information present in the forest. In particular, such techniques would allow
for the mapping of the neutral hydrogen distribution in the Universe at the scales and
redshifts where the forest is observable.

We begin in Section 2 by exploring how WDM models affect the Lyman-α forest
and the underlying neutral hydrogen field. For that purpose, we introduce a set of
cosmological simulations that will be at the core of this work, the SHERWOOD simulation
suite. We discuss the main aspects of such simulated data, including the cosmological
code used in them. We conclude Section 2 with a statistical analysis of the Lyman-
α forest. Section 3 is devoted to introducing the deep learning machinery used to
reconstruct the neutral hydrogen density field from the Lyman-α forest flux. We begin
by motivating the use of machine learning techniques and describing the basic concepts
and implementations related to such tools. Next, we discuss the motivation, architecture
and implementation of the Bayesian neural network used in this regression task. We
describe how we train the model using simulated data, evaluate its performance and
robustness, and discuss some relevant questions about its internal dynamics. Armed
with a machine learning pipeline that can reconstruct the neutral hydrogen density
field from observed Lyman-α skewers, we are set to use this information in Section
4 to constrain WDM. We discuss and implement a statistical pipeline to convert the
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1 Introduction

recovered neutral hydrogen density field into WDM constraints. We extensively test
this pipeline first on simulated data, from which we know the DM model used. Then,
we turn our attention to real observational data and apply our technique to a set of
quasar sightlines obtained from state-of-the-art spectrographs. We compare our results
with the most up-to-date constraints in the literature, both in terms of tightness and
efficiency in data usage.
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2 Simulating the Lyman-alpha
forest

In Section 1 we discussed how the Lyman-α forest is sensitive to multiple physical
parameters, such as the low-density gas temperatures, velocities, densities, etc. Each
possible state of the IGM’s ionised low-density gas can lead to different absorption
spectra and different morphologies of the forest. Hydrogen reionisation finishes at z <

5.3 [33]. Hence, at low redshift, there is no neutral hydrogen to produce absorption
features, and we have complete transmission of the continuum flux without features,
which means we cannot extract information about the IGM through this process. On
the other end, at high redshifts, z > 6, the hydrogen is not sufficiently ionised and total
absorption of the quasar continuum by neutral hydrogen generates long Gunn-Peterson
troughs. The Lyman-α forest at 2 ≲ z ≲ 6 is then a powerful probe of the state
of the IGM at scales and redshifts not accessible by any other observable [34]. As a
consequence, simulations of the Lyman-α forest are typically carried out at said redshift
range.

2.1 The Sherwood simulation suite

Lyman-α simulations are typically based on cosmological simulation codes. In this
work, we will mainly focus on the SHERWOOD simulation suite1 [35], which is based on
the GADGET-2 code developed by Volker Springel [36]. GADGET-2 uses the Lagrangian
formulation of fluid dynamics to trace the evolution of fluid particles.

GADGET-2 traces non-interacting dark matter (as described by the collisionless Boltz-
mann equation) by sampling the phase space with a finite number of particles and
solving their dynamics. The dynamics of such particles are subject to the Hamiltonian

1https://www.nottingham.ac.uk/astronomy/sherwood/
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H =
∑
i

p2
i

2mia(t)2
+

1

2

∑
ij

mimjφ(xi − xj)

a(t)
, (2.1)

where x are the comoving positions, a the scale factor, p the canonical momenta, m the
particle masses and Φ the gravitational interaction potential.

On the other hand, the gas particles are traced using Smoothed Particle Hydrody-
namics (SPH). SPH describes a fluid using a finite set of tracer particles that sample
the local state of the fluid. Then, smooth quantities are obtained by using a smoothing
kernel to interpolate between the tracer’s properties. The equation of motion for the
SPH particles is then

dvi

dt
= −

N∑
j=1

mj

[
fi
Pi

ρ2i
∇iWij(hi) + fj

Pj

ρ2j
∇iWij(hj)

]
, (2.2)

with

fi =

[
1 +

hi

3ρi

∂ρi
∂hi

]−1

. (2.3)

Here, W is the smoothing kernel, hi are smoothing length parameters, Pi are the pres-
sures associated with the particles and ρi are their densities. For more details see the
original paper [36].

Gravity is the driving force for structure formation in the Universe, but its long-
range nature makes it challenging to implement efficiently. GADGET-2 implements a
gravitational algorithm that ensures sufficient spatial adaptability by using a hierarchical
multipole expansion. By using a tree-like approach, we can compute the force applied to
a particle in complexity O(log(N)) instead of O(N), where N is the number of particles.
The algorithm works by subdividing the space into octants, such that each leaf contains a
single particle. The net force on a particle is then calculated by traversing the octree and
replacing a distant cell with a single body, thus reducing the number of needed terms.
This process is also called the Barnes-Hut algorithm, see Figure 2.1 for an illustration
of it. Finally, the dynamics of the system are then governed by the interaction potential

∇2Φ(x) = 4πG(ρ− ρ). (2.4)

The SHERWOOD suite implements the effect of WDM by suppressing the initial power
spectrum as described in [28]. In this approach, the effects of the warm dark matter
free-streaming length on the matter distribution are described by a transfer function
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2.1 The Sherwood simulation suite

Figure 2.1: An octree generated using the Barnes-Hut algorithm for a set of particles
(in white) in a 2D space.

T (k):

T (k)2 =
P (k)ΛWDM

P (k)ΛCDM

, (2.5)

where P (k)ΛC(W)DM are the matter power spectrum for a WDN and CDM model (see
Section 2.4 for more details). For pure thermal WDM models, as the ones we consider
in this work, the transfer function can be approximated by:

T (k) = [1 + (αk)2ν ]−5/ν , (2.6)

where ν ≈ 1.12 and α is related to the WDM particle mass by

α ∝
(mWDM

1KeV

)−1.11

. (2.7)

The initial conditions are then generated at z = 99 using the matter power spectrum,
see [35] for more details.

On top of the hydrodynamics and gravity, the Sherwood code implements a variety
of relevant physical processes that contribute to the state of the IGM and the Lyman-α
forest. The simulations calculate the photo-ionisation and photo-heating for the gas
(assumed to be in ionisation equilibrium) by using a uniform ionising UV background
as described in [37]. Instead of following the star formation process, dense and cold gas
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2 Simulating the Lyman-alpha forest

Table 2.1: List of the SHERWOOD runs used in the work. All box sizes are 20h−1cMpc.
The table shows the mean temperature of the IGM, T0, at redshift z = 4.4,
the redshift of reionisation, and the set of WDM masses included. We work
with the inverse WDM mass and consider 0 KeV−1 to correspond to the CDM
reference run.

Run T0[K] (z = 4.4) zendrei WDM [KeV−1]

L20-ref 10556 6.00 {0, 1
2
, 1
3
, 1
4
, 1
8
, 1
12
}

L20-ref-hot 12161 6.01 "
L20-ref-cold 9862 5.98 "

particles (∆ > 1000 and T < 105K) are converted into collisionless particles. The runs
discussed here do not include AGN feedback, which has a small effect on the Lyman-α
forest at high redshift.

In our work, we use a subset of the SHERWOOD suite described in [32]. All boxes are of
size 20h−1cMpc, with 2 × 10243 particles. In Table 2.1 we summarise the runs used in
this work.

The reference run is L20-ref. We will refer to the dataset consisting of this run as
SHERWOOD in what follows. We also use two runs with varied thermal parameters L20-
ref-hot and L20-ref-cold. The dataset consisting of all three runs will be denoted as
SHERWOOD THERMAL in this work. The variations in the thermal parameter T0 for the hot
and cold runs in the SHERWOOD THERMAL suite are achieved by scaling the photo-heating
rates, see [38] for more details. Note that this approach is not physical, since one would
ideally want to modify the properties of the ionising sources (luminosity function,...).

We conclude this section by visually inspecting the SHERWOOD data, to give a broad
intuition of how the IGM fields behave. In Figure 2.2 we show a 2D neutral hydrogen
overdensity field generated using the SHERWOOD suite at z = 4.2 for multiple WDM
models. On the horizontal axis, we linearly interpolate the density field for the WDM
models to show the effect of multiple DM candidates on the density field. In Figure
2.3 we show a 1D neutral hydrogen overdensity field at z = 4.4 along a 20h−1cMpc
Sherwood skewer for the CDM model run. Note how the density field is periodic since
the Sherwood simulations implement periodic boundary conditions. Most of the gas is
close to the mean density ∆ ∼ 1, with local overdensities that can generate ∆ ∼ 20

corresponding to regions where there is a positive flow of gas.
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2.2 Obtaining mock Lyman-alpha skewers from cosmological simulations
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Figure 2.2: A 2D neutral hydrogren overdensity field generated using the SHERWOOD suite
at z = 4.2 for multiple WDM models. The simulation size is 20h−1cMpc.
On the horizontal axis, we linearly interpolate the density field for the WDM
models to show the effect of multiple DM candidates on the density field.
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Figure 2.3: A 1D neutral hydrogren overdensity field at z = 4.4 along a 20h−1cMpc
Sherwood skewer for the CDM model run.

2.2 Obtaining mock Lyman-alpha skewers from

cosmological simulations

The SHERWOOD simulation suite described in Section 2.1 generates as output the low-
density IGM’s overdensity, hydrogen neutral fraction, sightline velocity, temperature
and the redshift of every pixel. For each run, those fields form a (5000, 2048) array for a
total of 5000 sightlines per box. From such data, we can use Equation 1.36 to compute
the simulated Lyman-α sightlines. We implement the code in Python and discretise the
integral in Equation 1.36 to sum over all 2048 pixels in the skewer. We use the values
for the recombination coefficient in [39].
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2 Simulating the Lyman-alpha forest

In our code, we consider two different implementations for the Voigt profile, which
is non-analytical. Firstly, we exploit the relationship with the Faddeeva function. The
Faddeeva function is implemented in Scipy under scipy.special.wofz for optimized
computation. Let us prove a relationship between the Faddeeva function and the Voigt
function. Let z = x+ iy. The Faddeeva function w(z) is defined as

w(z) =
i

π

∫ ∞

−∞

e−t2

z − t
dt (2.8)

and we have
Re (w(z = x+ iy)) = V (x, y) (2.9)

The proof is trivial:

Re i

∫ ∞

−∞

e−t2

z − t
dt = Re i

∫ ∞

−∞

e−t2(x− t− iy)

(x− t)2 + y2
dt

= y

∫ ∞

−∞

e−t2

(x− t)2 + y2
dt

(2.10)

We consider a second implementation of the Voigt function by leveraging a power
series expansion known as the Tepper-Garcia approximation [40]. The Tepper-Garcia
approximation is

V (x, y) ≈ e−x2

(
1− 2y√

π
K(x)

)
, (2.11)

with
K(x) =

1

2x2

[
(4x2 + 3)

(
x2 + 1

)
e−x2 − 1

x2
(2x2 + 3) sinhx2

]
. (2.12)

As can be seen from the Tepper-Garcia approximation, the Voigt function is a modified
Gaussian function. Figure 2.4 shows a comparison between the Faddeeva and Tepper-
Garcia implementations of the Voigt function for multiple values of the y parameter.
Since in our problem, typical recombination coefficients are of order 10−10cm3s−1, both
implementations are essentially equivalent. Note that the implementation using the
Faddeeva function is exact, in the sense that Equation 2.9 holds. We use the Faddeeva
function since it is already efficiently implemented in Scipy.

An important aspect when simulating Lyman-α sightlines are boundary conditions. In
fact, the simulation boxes in the SHERWOOD suite and other cosmological codes implement
periodic boundary conditions. This means that a physical quantity Q satisfies

Q(0) = Q(L), (2.13)
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Figure 2.4: Comparison of the Voigt function V (x, y) that is included in Equation 1.36
implemented using the relation with the Faddeeva function in Equation 2.9
(which is exact) and the Tepper-Garcia approximation in Equation 2.11.

where L is the length of the simulation box. This condition also applies to the density
field, temperature field, etc. Periodic boundary conditions allow the implementation of
relevant physical conditions, such as conserved quantities, in the simulation volume. As
a consequence, we would like the optical depth fields generated using the SHERWOOD data
to also implement periodic boundary conditions. This will be the case if every pixel in the
sightline has the approximate same environment. To achieve this in a computationally
efficient manner, observe that in Equation 1.36, for α → 0, the amplitude of the Voigt
profile is set by b(T ) ∼ 10 km/s for T ∼ 104. Since the pixel scale is ∼ 1 km/s, the
Voigt profiles only influence nearby pixels. As such, let us fix a pixel i on which we
wish to calculate the optical depth. Then, we iterate over all pixels j and evaluate the
condition |z[i]− z[j]| < L/2. If this condition is true, we use Equation 1.36 to compute
the contribution. If the condition is false, then we use the pixel at z[j] ± L/2 that is
closer to z[i]. This allows us to include (approximately) periodic boundary conditions
with a complexity O(N2) where N is the number of pixels. For reference, see the optical
depth field in Figure 2.5, where we have applied this procedure.
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2 Simulating the Lyman-alpha forest

Finally, to compare the simulated Lyman-α flux skewers with real observations, we
must address the normalisation of the flux field. This is necessary since the ionisation
rate is not perfectly known and calibrated in the SHERWOOD suite. We normalise the flux
field obtained from the SHERWOOD runs to match the mean observed flux in [41]. We do
this by introducing a factor a in the optical depth such that F = e−aτ matches the mean
observed flux at every redshift.

2.3 Peculiar velocities and optical depth-weighted

quantities

Equation 1.36 relates properties of the low-density hydrogen in the IGM to the Lyman-α
flux field. Each density pixel contributes to the optical depth at any fixed pixel by a
quantity proportional to its density and to the absorption profile. However, note that the
velocity contributes by shifting the centre of the absorption profile. As a consequence,
the small-scale peculiar velocities of the absorbers due to structure formation wash out
the correlation between the overdensity ∆ and τ fields. A second undesirable effect of
the velocity is that it can create potential degeneracies between the gas properties and
the flux. In fact, the effect of the velocity field can be captured by considering a shifted
density field generating the same flux field. These two problems mean that it is not
feasible to recover the real ∆ from the flux. To better correlate the flux features with
the density and temperature features and neglect the effects of peculiar velocities, it is
common in the literature to work with optical depth-weighted quantities [42], [43]. Such
quantities allow for better identification of the gas associated with a certain absorption
profile. Optical depth quantities are highly correlated to real quantities and act as a
proxy for the latter [43]. We define the optical depth-weighted overdensity field, ∆τ , as

∆τ,i =
∑
j

τij∆j/τi, (2.14)

where τij is the contribution to optical depth at pixel i by pixel j. Equation 2.14 can also
be used in an analogous manner to compute the optical depth-weighted temperature.
Figure 2.5 shows a 20h−1cMpc SHERWOOD CDM skewer at z = 4.4 with 2048 pixels.
We show the hydrogen overdensity ∆, temperature T and velocity along the sightline
V , Lyman-α optical depth and flux computed according to Equation 1.36. We also
show the optical depth-weighted overdensity and temperature, computed according to
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Figure 2.5: A 20h−1cMpc SHERWOOD CDM skewer at z = 4.4 with 2048 pixels. We show
the hydrogen overdensity ∆, temperature T and velocity along the sightline
V , Lyman-α optical depth and flux computed according to 1.36. We also
show the optical depth-weighted overdensity and temperature, computed
according to Equation 2.14.

Equation 2.14. Note how optical depth-weighted fields smooth out fluctuations in the
small scales since Equation 2.14 is essentially a weighted convolution. The main effect
of optical depth-weighted fields is that they are highly correlated to the flux field, with
a limited shifting effect due to local velocities. For instance, consider the optical depth
peak at ∼880 km/s, which is associated with a real ∆ peak at ∼840 km/s due to peculiar
velocity effects. However, the ∆τ peak closely follows to optical depth peak.
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2 Simulating the Lyman-alpha forest

2.4 Statistical analysis of the effect of WMD in the

Lyman-alpha forest and density fields

In Section 2.1 we have presented the SHERWOOD THERMAL simulation suite, which includes
runs with the same initial seed but different thermal parameters and WDM particle
masses. Naturally, changing such parameters modifies the IGM and Lyman-α forest
properties. In this section, we explore how the density field and the Lyman-α forest
are modified by such parameters within the Sherwood simulations. In Figure 2.6 we
show an example of this process. The figure shows the ∆ overdensity and flux for three
different WDM models in the SHERWOOD suite at z = 4.4. Note how the CDM skewers
show more fluctuations and pronounced features than the WDM models.
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Figure 2.6: The ∆ overdensity and flux for 3 different WDM models in ther SHERWOOD
suite at z = 4.4. Note how the CDM skewers show more fluctuations and
pronounced features than the WDM models.
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To quantify this in a more robust and precise way, we leverage two summary statis-
tics, the Probability Distribution Function (PDF) and the Power Spectrum (PS), that
aggregate multiple skewers to produce quantities that only depend on the statistical
properties of the fields, and not on the specific simulation seed for the sightline.

For a given set of sightlines, the PDF of a field is the histogram of values for such field
on the array obtained concatenating the skewers. We use Numpy’s numpy.histogram

to compute it and Rice’s rule to obtain the number of bins. According to this rule, for
N observed values, the number of bins in the histogram should be ∼ 2N1/3 [44]. For
data with 2048 pixels, we use 21 bins. Since in this section we are only interested in
quantifying the statistics for every model, we refer to Section 3.4 for a discussion of the
uncertainty estimation in field statistics.

Figure 2.7: The ∆τ probability distribution function (PDF) at z = 4.4 for different
WDM models in the SHERWOOD suite.

In Figure 2.7 we show the ∆τ PDF at z = 4.4 for different WDM particle masses in the
SHERWOOD suite. Note how low mass models tend to have a more localised distribution
near the mean, which reflects the observation from Figure 2.6 that such models have
smoother fields. In contrast, the CDM model has a greater variance, reflecting the fact
that more pronounced features occur, which leads to more extreme values for the fields.
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2 Simulating the Lyman-alpha forest

The PDF quantifies how often a certain value occurs, but not the correlations in the
field. To study the oscillations in the fields it is common in the literature to use the
Power Spectrum (PS) [45, 46]. The PS is defined in the Fourier space of the relevant
field, up to a normalisation factor. Here, we focus on the Lyman-α flux field, F , since it
has been measured from multiple quasar samples. Since we are only interested in how
F oscillates, we consider the flux contrast

δF =
F

F
− 1, (2.15)

where F is the mean value of the field. The power spectrum Pk is defined as the modulus
of the normalised Fourier transform of δF :

Pk =

∣∣∣∣F( 1NF )

∣∣∣∣2 , (2.16)

where N is the number of pixels on a sightline (2048 for SHERWOOD) and F denotes the
(Fast) Fourier Transform operator. Note that, by the Wiener-Khinchin theorem, the
power spectrum is just the Fourier transform of the autocorrelation function of the δF .
We compute the PS using Numpy’s numpy.fft class. The wavenumber k is binned in
log space, with a spacing of ∆log(k) = 0.1 in the same manner as [47]. Figure 2.8
shows the Lyman-α flux power spectrum for different WDM models in the SHERWOOD

simulation suite, compared to the observed PS by [47]. We begin by observing that
WDM models have the effect of suppressing structure only in the small scales (high k

values). At large scales, all WDM models have a similar power spectrum. Lower masses
suppress the PS more than WDM models close to CDM. In Figure 2.8, we observe a
systematic bias where the Sherwood CDM power spectrum underestimates the observed
power spectrum in [47]. In the original Sherwood publication [35], attention is drawn
to a systemic bias in the continuum level produced by the SHERWOOD runs. As redshift
increases, the authors note how the simulations recover the true continuum level of
F = 1 less frequently and suggest a continuous bias correction factor to be applied to
the flux in order to forward model the skewers. This bias correction is estimated to be
∼ 0.8 for z > 4 and has not been incorporated in Figure 2.8. It could then be the origin
of the differences observed in the figure.

Since both the thermal state of the IGM and the WDM particle mass affect the
Lyman-α forest, we could ask whether those two effects are degenerate. In fact, a
hotter IGM means that the Voigt absorption profiles are wider, which smoothes out the
forest at small scales, similar to the effect of low WDM masses. If those two effects
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Figure 2.8: The Lyman-α flux power spectrum for different WDM models at z = 4.2 in
the SHERWOOD simulation suite. For reference, we also plot the observed PS
by [47].

are completely degenerate, a smoother Lyman-α forest would not allow discriminating
between a hotter IGM and a smaller WDM particle mass. In Figure 2.9 we show a
comparison at z = 4.4 of the effect of WDM models and thermal models within the
SHERWOOD THERMAL suite on the Lyman-α flux power spectrum. We find that both
effects are not completely degenerate. WDM models only suppress the power spectrum
at small scales, while hotter models modify the power spectrum in the whole wavenumber
range. As a consequence, the Lyman-α forest breaks the degeneracy between thermal
and WDM models.
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Figure 2.9: A comparison at z = 4.4 of the effect of WDM models and thermal models
within the SHERWOOD THERMAL suite on the Lyman-α flux power spectrum.
Note that both effects are not completely degenerate. WDM models only
suppress the power spectrum at small scales, while hotter models modify the
power spectrum in the whole wavenumber range.
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3 Deep Learning the Lyman-alpha
forest

3.1 Introduction and motivation for the use of Deep

Learning

In this section, we introduce a deep-learning machinery that can reconstruct the optical
depth-weighted neutral hydrogen density field from an observed Lyman-α forest. We
begin by giving a broad introduction to machine learning and neural networks and then
focus on their application to our cosmological problem.

Fundamentally, a neural network is a directed and acyclic computational graph [48].
It represents a set of operations that transform input data input into an output. In
the simplest case of a fully connected network, the nodes of this graph are represented
by neurons. Neurons are organised on successive layers, making the information flow
from one layer to the following one. In the most basic scenario, the neurons in a given
layer are linearly connected to the neurons in the previous layer. Each neuron then
adds a bias to the result of the computation and applies a non-linear function to the
result, which determines the activation state of the neuron. Consider the graph shown
in Figure 3.1a, where the input neuron has a value x and the output neuron has a value
y(x). The intermediate layers have values{

x1 = σ(α1x+ β1)

x2 = σ(α2x+ β2)
, (3.1)

where αi are the linear weights, βi the biases, and σ is a non-linear activation function.
Typical choices include tanh on ReLU (Rectifier Linear Unit) given by RELu(x) =

max(0, x). Graphs such as the one shown in Figure 3.1a are known as fully connected
layers. Much more complex architectures have of course been investigated. Depend-
ing on the specific problem and dataset, we can incorporate a priori knowledge of the

29



3 Deep Learning the Lyman-alpha forest

x

x1x2

y(x)

(a) Graph for a simple MLP with a hidden
layer (in orange) and an output neuron
(in cyan).

(b) Unit impulse (in black) and the output
of the MLP shown in cyan approximat-
ing the impulse.

Figure 3.1: A simple multilayer perceptron (MLP) with a single hidden layer and a tanh
activation function can approximate a unit pulse function. From left to right
and top to bottom, the three biases are {0, 20, 0} and the four weights are
{20,−20, 1/2, 1/2}.

problem in the design of the network. For instance, in Computer Vision, the use of
convolutional layers especially targeted at identifying key features in images has proven
to be extremely successful [49]. In the analysis of time series, Long Short-Term Memory
(LSTM) neurons allow the network to “remember” information from previous inputs
[50].

From the theoretical standpoint, neural networks are universal approximators (for
sufficiently well-behaved functions), which makes them especially appealing in the mod-
elling of complex systems. A concrete result is as follows [51]:

Theorem 1 (Universal approximation theorem). If f : Rn → Rm is a Lebesgue p-
integrable function and ε > 0, then there exists a fully connected ReLU network F : Rn →
Rm such that ∫

Rn

||f(x)− F (x)||p dx < ε.

Theorem 1 can be expanded to include tight bounds on the depth or width of the
network, which then depend on n and m. Note that all the complexity of a fully
connected neural network is generated by the non-linear activation function. With a
linear activation function, a fully connected network would be an affine transformation,
which cannot approximate arbitrary non-linear functions.

This theoretical result can be easily visualised by understanding how a simple fully

30



3.1 Introduction and motivation for the use of Deep Learning

Figure 3.2: Evolution of the largest supercomputers in the TOP500 list in recent years
(x-axis). The y-axis shows the peak performance in GFLOPS for the first-
ranked computer (red), the last-ranked computer (yellow), and the cumu-
lative power for the top 500 computers (blue). Source: "History of Super-
computing." Wikipedia, Wikimedia Foundation, 25 Jul. 2024. Accessed 24
Sept. 2024..

connected network (a multilayer perceptron, MLP) can approximate a unit impulse
function. It is then enough to recall that a linear combination of step functions can
approximate any integrable function. In Figure 3.1a we show an MLP consisting of
an input neuron, an output neuron and a hidden layer with two neurons with a tanh

activation function. From left to right and top to bottom, we set the three biases as
{0, 20, 0} and the four weights as {20,−20, 1/2, 1/2}. The resulting MLP then produces
the approximation shown in figure 3.1b of the unit impulse over [0, 1]. By expanding
the number of neurons in the hidden layer we could approximate impulse functions of
arbitrary width and height and centered at every arbitrary value. The high degree
of expressivity of neural networks makes them particularly suited to parametrically
approximate complex non-linear relationships between variables that would otherwise
be intractable.

Theorem 1 establishes a theoretical aspect of neural networks supporting their utility,
but it does not provide a method (nor does it guarantee the existence of any) to find
networks that approximate a particular function of interest. The process of fitting a
parametric statistical model (such as a neural network) to a labelled dataset of interest
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is known as supervised learning, and constitutes one of the main aspects of this work, as
we will explain in the rest of this section. In recent years, some factors have allowed the
rapid expansion of machine learning, marking a new era in the use of large parametric
networks for real-world problems:

• Hardware development. The rapid (quasi-exponential) growth in computer
power in recent years, as exemplified by Moore’s law [52], means that extremely
deep and complex models can now be trained and effectively used. As a reference,
the language models LLAMA by Meta can have over 65 billion parameters [53].
To handle this amount of data, High-Performance Computing (HPC) infrastruc-
tures (such as supercomputers) are needed. Figure 3.2 shows the rapid evolution of
the top supercomputers in the world, as ranked by the TOP500 list1. In 1993, the
Fujitsu Numerical Wind Tunnel in Japan topped the list with 124 GFLOPS.
In 2023, the list was topped by Frontier in the United States, with over 1000
PFLOPS, which corresponds to an 8000-fold improvement. Progress in hardware
technology has also been remarkable. For instance, Graphics Processing Units
(GPU) are now common when training machine learning models. As a last exam-
ple, in May 2017, Google introduced an architecture known as Tensor Processing
Unit (TPU) specially designed to accelerate neural network operations [54]. HPC
also enables the generation of synthetic datasets from simulations, that can then
be used as training datasets. We will leverage this idea in the rest of this work.

• Computationally-efficient algorithms. Together with hardware development,
we have seen a rapid evolution of computational and mathematical algorithms in
the field of statistical learning that has enabled the efficient utilisation of HPC
resources. The epitome of such an algorithm might be backpropagation [55] which
is the most common algorithm used in the training phase to update the weights
when deploying a neural network. Together with backpropagation, a growing set
of optimisers for deep learning problems has been developed. A popular choice is
Adam, which was originally published in 2017 [56].

• Availability of large datasets. The advent of next-generation instruments and
data-collection systems provides the scientific community with increasingly large
datasets. Prominent examples in the field of astronomy include Gaia [57], whose
third data release (DR3) includes 10 TB of data for 1.46 billion sources2, or the

1https://top500.org
2https://www.cosmos.esa.int/web/gaia/dr3
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Figure 3.3: Histogram showing the number of SNe discovered each year as given by the
Asiago Supernova Catalogue [58].

Euclid telescope, expected to deliver 850 GB of compressed data per day3. At last,
in Figure 3.3 we show the evolution in the number of SNe discoveries per year.
The figure has been obtained from [58].

Let us demonstrate the relevance, pertinence, and range of applicability of machine
learning methods in astronomy and cosmology by examining recent endeavours doc-
umented in the literature. While not exhaustive, this examination provides a broad
overview of previous efforts in the field and illustrates some recent successes of machine
learning-oriented approaches in data-driven problems.

The abundance of data from surveys covering large regions of the sky aimed at target-
ing QSOs makes supervised statistical techniques a particularly attractive data analysis
technique. For reference, the main quasar sample in the data release number 16 for
the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) contains 434820 tar-
gets with redshifts in the range 0.8 < z < 2.2 [59]. The prediction of the intrinsic
Lyman-α emission line from high redshift QSOs is a non-trivial problem that has im-
portant implications in the study of IGM damping wings and the reionisation of the
later [60]. Reconstruction techniques often rely on the correlation of the Lyman-α peak
with other observable lines and information redward of the Lyman-α line. Machine
learning approaches are then suitable to connect the unattenuated information redward

3https://sci.esa.int/web/euclid/-/46661-mission-operations
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3 Deep Learning the Lyman-alpha forest

of the Lyman-α peak with its intrinsic profile. In Blind QSO reconstruction challenge:
Exploring methods to reconstruct the Lyα emission line of QSOs [61], the authors per-
form an in-depth comparison of different state-of-the-art techniques based on statistical
learning. The authors blindly evaluate their performance on two QSO samples randomly
extracted from X-Shooter and BOSS with 3.5 < z < 4.5, in such a way that selecting
samples already used in the training data set was avoided. The various techniques range
from principal component analysis (PCA) approaches, such as [62], to deep learning net-
works [63]. The authors conclude that the better-performing pipelines consistently rely
on machine-learning approaches. The authors caution against overreliance on machine
learning techniques due to their potential lack of statistical uncertainty, which is one of
the main aspects that we will develop in this work.

Parameter inference on WDM using deep learning has already been tentatively ex-
plored in the recent literature. The paper Inferring Warm Dark Matter Masses with
Deep Learning [64], which is especially relevant for this work, demonstrates that neural
networks can be used to recover WDM parameters from observed field density images.
The authors present a suite of 1500 cosmological N-body simulations with varied WDM
mass in the range of 2.5 to 30 KeV. Field density images of size 25h−1Mpc, with var-
ied image resolution, simulation resolution and redshift (in the range 0 ≤ z ≤ 5) are
extracted from the simulation runs. The images are augmented with usual standard
techniques (such as image rotation) and then incorporated into training datasets. The
authors use a Convolutional Neural Network (CNN) trained to directly predict WDM
masses based on an input density field image. Their fiducial convolutional network
trained with the set of the highest resolution images is able to accurately recover WDM
masses with an accuracy of ±1 KeV for models up to 10 KeV. After this threshold value,
the network is no longer able to recover the true mass and predicts an approximately
constant mass, see Figure 3.4. Note that in the architecture presented by the authors,
the network is also trained to predict an uncertainty estimate. Another interesting in-
sight offered by this paper refers to the capacity of neural networks to make use of the
full information contained in a field distribution (in this case, the density field). By
training a network on a full-density field image the model learns the relevant properties
of the field that can lead to an accurate parameter prediction. The authors train an-
other model only on summary statistics, in particular, on the density power spectrum,
and compare its performance with their fiducial model trained on the full images. The
model trained only on the power spectra shows a significantly degraded performance,
with higher uncertainties and accurate prediction only up to 5.5 KeV. This illustrates
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Figure 3.4: Figure extracted from [64]. The left panel shows a sample image density
field used in the training data by the authors, with varied image resolution.
The right panel shows a sample of predicted WDM masses versus the true
WDM mass of the simulation for their fiducial neural network, which can
accurately recover the WDM model within a 1 KeV accuracy of up to 10
KeV.

how deep learning techniques can help to harvest the full information present in a field
(or generally, in a complex input tensor).

Another recent use of deep learning to analyse IGM data can be found in the paper
LyαNNA: A Deep Learning Field-level Inference Machine for the Lyman-α Forest [65],
where authors harvest the field level potential of residual convolutional networks to
perform inference on the thermal parameters of the IGM, namely T0, the temperature
at mean density, and γ, the slope of the temperature-density relation. Their model is
trained on simulation boxes with a side length of 120 Mpc from which 105 sightlines
are extracted and processed to produce mock Lyman-α spectra. The simulation boxes
are run with different thermal parameters, by sampling 121 (T0, γ) combinations in
the parameter space. The network is trained on 24000 labelled spectra from the mix
of thermal models, and the architecture is designed to predict a mean value for the
thermal parameters as well as an estimate for the parameter covariance matrix. Figure
3.5 shows the scatter in the point predictions for (T0, γ) for a set of 4000 unseen test
spectra. The true parameter values, shown as dashed lines, are recovered by the average
of the point predictions, shown as the dark green cross. The authors also perform a
comparison with an inference pipeline based on the traditional transmitted flux power
spectrum and find that the posterior constraint using the machine learning field-level
approach is 5.65 times tighter.
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Figure 3.5: Figure extracted from [65] showing the performance of their neural network
recovering thermal parameters on a set of unseen skewers. The true param-
eter values, shown as dashed lines, are recovered by the average of the point
predictions, shown as the dark green cross.
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3.2 Fundamentals of (Bayesian) Neural Networks

A very general regression problem in statistical learning [66] arises when we observe a
quantity Y that is assumed to depend on an independent variable X through a relation
of the form

Y = f(X) +N (0, σ), (3.2)

where f is a function defining the relation Y = Y (X) and N (0, σ) is an error term
modeling a zero-mean Gaussian noise. The problem then consists of estimating f given a
sample of observations {Xi, Yi}i to obtain a functional form f̂ that can then be evaluated
to obtain predictions. Following the examples in Section 3.1, X might be the flux spectra
redward of the Lyman−α peak, and Y might then be the intrinsic shape of the Lyman−α
peak in the quasar spectra. The noise then is produced by different sources, for instance,
associated with the instrumental devices. We could then use the obtained f̂ to predict
the intrinsic Lyman−α peak of a QSO, f̂(X), when we only have information about the
spectrum redward of it, X. As it is expected, the quality of our prediction depends on
how accurate is the approximation f̂ with respect to f , but also on how noisy our data
is. In fact, we see that, if the true quantity associated with X is Y :

(Y − f̂(X))2 = (f(x) +N (0, σ)− f̂(X))2.

Taking expected values and noting that the only stochastic component here is the noise,
we obtain

E[(Y − f̂(X))2] = (f(X)− f̂(X))2 + σ2. (3.3)

In Equation 3.3, the first term of the right-hand side represents the error produced by
approximating f by f̂ , while the second term is a theoretical limit imposed by the noise
properties.

Parametric methods represent a powerful statistical learning tool to approximate the
target relation f between variables. Methods such as linear regression, which approxi-
mates Y = f(X) using a linear functional form on the parameter values, offer limited
flexibility in terms of approximating complex relations but allow for a high degree of
interpretability of the model. On the other end of the spectrum, deep learning models
offer a large degree of expressivity (see Section 3.1), but interpretation of individual pa-
rameters is often not possible. Increasing the number of parameters can also cause the
model to learn from spurious structures in the finite data sample, or learn from possible

37



3 Deep Learning the Lyman-alpha forest

noise correlations. This process, known as over-fitting, can significantly impact the pre-
dictive performance of the model when predicting on unseen data. Multiple techniques
have been explored to mitigate over-fitting [67]; we will adopt some of them in this work
and explain them in the following sections.

In this section, we will discuss the basic workflow involving a deep learning model
in a general and abstract scenario. We will restrict ourselves to the topics that are
relevant to this work, and later explain in detail how we implement this workflow for
our problem. The general workflow when working with a deep learning statistical model
under supervised learning includes the following phases:

1. Collecting data and processing it to generate a training dataset. This requires
specific domain expertise to assess the quality and representability of the data.

2. Designing a deep learning architecture, i.e., a computational graph that depends
on a set of parameters and generates target outputs from the input data.

3. Using the available data to train the model. This is done by optimising the model
parameters by minimising a selected loss function.

4. Assessing the performance of the network using a previously unseen dataset.

5. Using the model on real unseen data to make predictions.

3.2.1 Dataset generation, data augmentation and overfitting

In a general real-world setting, only a finite dataset is available to us, for instance,
obtained from observational procedures. That is, we have a set of pairs D = {Xi, Yi}i=N

i=1

of N observations from an input-output pair, distributed according to some distribution
F (X, Y ):

(Xi, Yi) ∼ F, i = 1, ..., N. (3.4)

Of course, in general, we don’t have access to the distribution of this population (i.e., the
function f describing the data relation Y = f(X)), otherwise, we would already have
a perfectly accurate model, and we would not invoke any statistical learning tool. The
challenge is then to use our sampleD to infer properties of the population. Since we don’t
have access to the generating function f , we cannot assess the general performance of
the model on arbitrary input data. For this purpose, the training dataset D is typically
split into two disjoint subsets D = DT ⊔ DV , where DT represents the subset of the
data used for training, and DV represents the subset of the data used to validate the
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model and assess its performance. The central idea behind this split is to be able to
validate the model on data that has not been used in the training process, allowing for
an estimation of the model’s generalisation to the population given by:

ε = EF [L(Y, f̂(X|DT ))], (3.5)

where L is a loss function. The exact form in which D is split needs to be chosen a
priori to have a representative sample of the population. A common easy-to-implement
strategy is to randomly select the samples in D that will be part of DV and distribute
them according to a ratio, that is commonly taken to be in the range 60−80%, meaning
that a larger percentage of D is dedicated to training. In this case, an unbiased estimator
of ε is

ε̂ =
1

|DV |

|DV |∑
i=1

L(Yi, f̂(Xi)), (3.6)

where the sum runs over the validation dataset. More complex strategies that take into
account the topology of the data exist and allow for an optimal training-validation split
[68]. The validation subset can also be sequentially cycled through all the available
samples in a series of methods called cross-validation [69]. Cross-validation uses all
available data in a validation stage by retraining a model on different disjoint splits of
the data. This allows for a more precise evaluation of the model.

If the training subset DT is not representative of the population, then the global
error in Equation 3.5 will be large, and the model will not be able to learn the general
properties of the data. This can cause the model to overfit and learn from spurious
correlation in the data and noise, and can be encouraged by having an excessive number
of free parameters. Overfitting is not an intrinsic characteristic of deep-learning models,
and can also be seen for instance in simple polynomial regression when the number of
“independent” points exceeds the order of the fitting polynomial. Figure 3.6 illustrates
the simple example of polynomial regression overfitting the training dataset as the order
of the polynomial increases. Note how, by construction, the fit becomes increasingly
accurate on the training data, but loses generalisation power on unseen points.

The training data DT can be artificially extended using data augmentation techniques
[70] to generate new training points from existing points. Data augmentation aims at
presenting the model with data that maintains the intrinsic properties of the original
data but varies other features that should not affect the prediction. This approach
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Figure 3.6: The left panel shows the data points (with added noise) generated from a
function f in black. Three generative polynomial models are fitted to the
data: linear regression in orange, and two smoothing splines in green and
blue. The right panel shows the fitting error as a function of the polynomial
degree, i.e., the flexibility of the model. The grey curve shows the error
on the training dataset, which is monotonically decreasing. The red curve
shows the error on the validation dataset, which initially decreases but then
grows as the model overfits the training data. Figure extracted from [66].

can be understood to be inspired by symmetry considerations4 and is particularly use-
ful in computer vision tasks. Some common data augmentation techniques for image
processing include:

• Basic geometric transformations such as rotation, translation or flipping an image
(or field) are efficiently implemented. Cropping can also be easily implemented
but changes the dimensionality of the data.

• Basic colour space manipulation in coloured images, including isolating a single
colour channel, or modifying the brightness of an image.

• Noise injection during training is particularly useful in making neural networks
robust against noisy and corrupted data. Note that this can be relevant if the data
we are expecting to use the trained model on is noisy (for example instrumental
data from a spectrograph). The noise can be randomly drawn from independent
distributions, or drawn from a noise model if we have additional insights on how
to model it.

4A strawberry is a strawberry regardless of its orientation

40



3.2 Fundamentals of (Bayesian) Neural Networks

• Convolutional operations with kernels, such as the Gaussian kernel, apply a limited
spatial resolution (blurring), or the Sobel kernel related to edge detection.

3.2.2 Deep learning architecture

The network architecture defines the parametrisation of the function that approximates
the true underlying relation between input and output data points. In this section,
we briefly explore some basic building blocks used when constructing a deep learning
network. A neural network (NN) ϕ is a computational graph with an input tensor X

and an output tensor Y and parametrized by a set of values ω that define a functional
model

Y = ϕ(X|ω) ≡ ϕω(X). (3.7)

For simple linear topologies, NN can be specified given a set of connected layers that
carry out the elementary operations. These layers can be grouped in blocks to form
subnetworks inside a NN. Three of the simplest layer architectures are feedforward layers
(also known as dense layers), convolutional layers, and residual layers. Since they will
be of use in our machine-learning workflow, we will discuss their exact structure.

• In the simplest feedforward network, such as the one illustrated in Figure 3.1a, all
layers are linearly connected with an additional activation function, leading to a
model of the form

X = l0,

li = σi(W ili−1 + bi) ∀i ∈ [1, N ],

Y = lN ,

(3.8)

where li are the layers, Wi the weights, bi the biases, σi the activation functions
and N the number of layers.

• Convolutional layers are especially useful in signal processing and computer vision
problems. They incorporate multiple convolution operations on the input array.
The parameters of the layers define the exact way the convolution is performed.
Consider for illustration purposes the case of an input 2D array of size (N,N).
The convolutional layer is internally parametrized by a kernel ω of shape (m,m)
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such that the input X to the layer is transformed as

Yi,j =
m−1∑
a=0

m−1∑
b=0

ωabXi+a,j+b. (3.9)

The output size will be (N−m+1, N−m+1). Lastly, a user-specified non-linearity
is applied. The implementation of convolutional layers in machine learning APIs
is usually done by specifying a kernel size and a set of auxiliary parameters. For
instance, a single layer can have multiple independent kernels, can apply padding
to the input array before convolving, etc.

• Residual layers implement a skipping connection within another layer, typically
a convolutional one. A skipping connection adds the input tensor to the output
tensor:

Y = T (X) +X, (3.10)

where T is the other neural layer. A relevant property, both from the theoretical
and practical viewpoints, is that the derivative of the output tensor Y with respect
to X always includes an identity term that tends to prevent it from being zero. This
allows the information to flow easily in deep architectures, speeding up training
and limiting overfitting [71].

• Batch-normalisation layers [72] address the training difficulty encountered when
the input tensors vary significantly from one sample to another. These differences
cause different network weights to be adjusted simultaneously in opposite direc-
tions, which ultimately impairs training. Batch-normalisation layers simply aim
at the normalisation of each tensor input feature when we feed a batch of samples
to a network. A batch-normalisation layer has 2 internal parameters γ, β for each
input feature, that are applied as a linear transformation after normalisation. If
we consider an input feature x (that is, a component of X), and a batch of samples
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Figure 3.7: Max pooling operation with kernel size (2, 2).

{x1, ..., xm}, then a batch-normalisation layer is implemented as:

µ =
1

m

m∑
i=1

xi

σ2 =
1

m

m∑
i=1

(xi − µ)2

x̂i =
xi − µ√

σ2

BNγ,β(xi) ≡ γx̂i + β

(3.11)

• Max pooling layers (Figure 3.7) are usually added after convolutional layers to
downsample, add translational invariance and hence make the network more ro-
bust against the presence of features in different spatial positions. Similar to a
convolution, max pooling is done by sliding a kernel window onto the input array,
but now we select the maximum value within the window.

3.2.3 Prediction uncertainty and Bayesian models

In classical supervised deep learning, a neural network with weights θ is trained on some
dataset D to produce a minimal cost estimator θ̂ for a predefined loss function. From the
statistical point of view, this is a point estimate for each one of the network parameters.
Point-estimate networks might lack explainability and generalise in overconfident ways
to unseen data, and there is no obvious mechanism for such models to express their
ignorance in such cases.

This is an analogous situation to classical parameter inference in statistics. From
this perspective, the frequentist approach to parameter estimation can be compared to
point-estimate networks. However, Bayesian statistics [73] has flourished in the last
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Figure 3.8: Illustration for a non-stochastic neural network a), a network with stochastic
activations b), and a network with stochastic weights in c). Source: [74].

decades and is becoming the dominant statistical framework for data analysis inference
problems. In the Bayesian paradigm, parameters are treated as random variables to
reflect our ignorance about their “true” values. Our prior beliefs about the parameters
θ are then updated in the presence of new data D using Bayes’ theorem:

P (H|D) ∝ P (D|H)P (H), (3.12)

where H is a certain hypothesis about θ, P (D|H) is known as the likelihood and encodes
the relation between the data generation and the parameters, and P (H) reflects our prior
beliefs. Bayesian frameworks have two main advantages. Firstly, they allow us to make
our assumptions explicit by setting up the prior P (H). This allows us to clarify, discuss
and criticise prior knowledge in a clear way. Secondly, they provide a natural approach
to quantify uncertainties in the inference parameters.

Bayesian neural networks are models that incorporate stochastic elements and that are
trained using Bayesian inference techniques [74]. This is generally implemented either
by considering stochastic weights in the network or by considering stochastic activations,
see Figure 3.8.

A Bayesian neural network is defined by a prior distribution over the weights (when
they are set to be stochastic), a functional model that forwards the inputs and generates
the outputs, and a likelihood model that defines the predictive power of the network
p(y|x, θ). The model weights are updated in the presence of data D according to Bayes’
formula

p(θ|D) ∝ p(Dy|Dx, θ)p(θ) (3.13)
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When the model has seen the data, we can use the posterior distribution on the param-
eters to generate data or make a prediction:

p(y|x,D) =
∫
θ

p(y|x, θ)p(θ|D). (3.14)

Note that Equation 3.14 weights the predictions by each possible parametrization of
the network using the posterior distribution on the weights. In that sense, Bayesian
networks can be understood as training an ensemble of networks and then averaging
their predictions. Note that ensembles are also a popular technique with classical neural
networks [75]. In fact, since the training of a classical network also has stochastic
components (the initial weights, shuffling of the data, ...), it is common to train multiple
networks with different initialisation seeds and weight their predictions, which tends to
outperform even the best-performing network.

Let us illustrate how a committee of networks can outperform even a top-performer
network. Suppose we train three independent networks A,B,C for a classification task
with two classes, and that they all have the same error probability p. In an exercise of
pure democracy 5, consider a classifier D who picks the class with the majority of votes.
Since D is wrong if and only if at most one of the classifiers is wrong, the probability of
error for D is (considering p→ 0)

p3 − 3(1− p)2 = O(p2),

and hence D outperforms A,B and C.

3.2.4 Hyperparameter selection

The performance and convergence properties of a deep learning model are highly sensi-
tive to its precise architecture, and hence, to the hyperparameters that control the latter:
number of layers, the exact type of layers (convolutional, dense,...) and other auxiliary
parameters that influence the training process. The optimal set of hyperparameters is
the one that produces the best-performing model on unseen data. There are three main
difficulties when choosing hyperparameters. Firstly, it is not obvious a priori how mod-
ifying a certain parameter will affect the performance of a model. For example, if we
add an extra layer to a network, will that improve expressivity and performance or will
it lead to overfitting? This is a consequence of the low interpretability of deep learning

5“I love democracy. I love the Republic”, Senator Palpatine.
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models. Secondly, evaluating the performance of a model requires training it, which is
computationally expensive. Finally, there are potentially an infinite number of possible
architectures to explore.

Many Python APIs implementing routines to find optimal hyperparameters exist.
They include state-of-the-art algorithms for exploring the hyperparameter space, select-
ing which parameters to explore, and early-stopping the evaluation of unpromising trials.
In this work, we use OPTUNA [76], which is a Python optimisation API, to select the ap-
propriate set of hyperparameters for our deep learning models. OPTUNA implements a
wide variety of searching algorithms to explore the hyperparameter space. Among those
strategies, we can choose a naive grid search, where the user defines a grid over the hy-
perparameter space, and all possible combinations are tested and ranked in a sequential
order. OPTUNA can also implement a random search, which randomly selects the next
trial over a grid. However, OPTUNA also implements more complex searching algorithms.
The default search strategy is the Tree-structured Parzen Estimator (TPE) approach.
TPE is designed to maximise the expected improvement when selecting a new sample.
If we have already explored a set of points x, the expected improvement (EI) for a new
trial y∗ is defined as

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)p(x|y)p(y)

p(x)
dy , (3.15)

where we are assuming a one-dimensional problem for clarity, and p(y|x) represents
the probability of choosing a trial y having observed x, as obtained from the searching
algorithm. TPE optimises equation (3.15) by using the following routine [77]:

1. We initiate a set D of explored trials with Ni parameters and compute their per-
formance.

2. D is split as D = Dl ∪Dg in the top γ performers (a common value is γ = 0.2) Dl

and the lower performers Dg.

3. We fit a two Gaussian mixtured distributions to Dl, l(x) and to Dg, g(x). This is
a Kernel Density Estimation (KDE) for the distribution of both sets. See Figure
3.9 for an illustration of this step.

4. The new trial parameters are selected and added to D to maximise l(x)/g(x). In
practice, this can be done by generating Ns samples from l(x) and then maximising
l(x)/g(x) over those samples.
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Figure 3.9: Example KDE estimation for the distribution l and g used in the TPE al-
gorithm. The example shows samples for an arbitrary 2D parametric space
(X, Y ).

We can easily show that the TPE routine maximises the expected improvement
Equation 3.15. Firstly, note that γ = p(y < y∗) and that p(x) =

∫
p(x|y)p(y)dy =

γl(x) + (1− γ)g(x). Furthermore, if y < y∗, we have that p(y|x) = l(x), and hence,

∫ y∗

−∞
(y∗−y)p(x|y)p(y)dy = ℓ(x)

∫ y∗

−∞
(y∗−y)p(y)dy = γy∗ℓ(x)−ℓ(x)

∫ y∗

−∞
p(y)dy. (3.16)

We conclude that

EIy∗(x) ∝
(
γ +

g(x)

ℓ(x)
(1− γ)

)−1

, (3.17)

and so we need to maximise l(x)/g(x), as previously discussed.

3.2.5 Loss function and training

In this section, we further detail the training process of a deep learning model, and
describe the algorithms that will be used to train our model. As we have already
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discussed in Section 3.2.1, the goal of our model is to minimise the generalisation error:

ε = EF [L(Y, f̂(X|DT ))]. (3.18)

The loss function L should be chosen to encourage the model to produce realistic outputs.
For regression, where the goal is to estimate an output tensor Y from an input X, typical
choices include the usual Euclidean norm or the absolute difference:

L(Y, Ŷ ) =
∑
i

|Ŷi − Yi|p, p = 1, 2, (3.19)

where Ŷ is the model prediction. This choice of loss function is minimised when the
model correctly predicts the target tensor. An important piece of information to note
is that Equation 3.5 is generally unknown, since we don’t have access to all the possible
realisations of the data, but only to a limited training dataset. As a consequence, we
typically minimise the loss function computed on small samples of the training data,
called batches, by averaging the loss over all samples in the batch. Observe that then,
computing the average loss over a large batch will yield a closer approximation to the
true loss function. The training process then uses these estimations of the loss to update
the network parameters, θ, using techniques that involve the computation of the loss
gradient. This process is normally repeated multiple times over the training dataset.
Each time the model sees the whole dataset is known as an epoch. A training loop with
Ne epochs and batches of size Bs, with Nb batches, can then be written as:

Algorithm 1 Classical deep learning training loop
while epoch < Ne do

while batch < Nb do
Loss← 1

Bs

∑
i L(Ŷi, Y )

Compute ∇θ(Loss)
Update θ ← θ(∇θ(Loss))
epoch ← epoch+1
batch ← batch+1

end while
end while

In Algorithm 1 there are two main steps we have not specified. Firstly, the computa-
tion of ∇θ(Loss). This is trivial from the mathematical viewpoint, but it is not trivial
to implement6. Most APIs implement a backpropagation algorithm for this step that we

6Note that this is purely a computer science problem.
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will not discuss here7. The second key aspect of a training loop is using the gradient
∇θ(Loss) to update θ. This step in Algorithm 1 was represented by θ ← θ(∇θ(Loss)).
The precise way of using the calculated loss gradients to update the weights defines
the optimiser 8. A naive way to optimise the loss at each iteration is to use the most
straightforward implementation of gradient descent, where the parameters are updated
using

θ ← θ − α∇θ(L), (3.20)

where α is a constant known as the learning rate. In general, optimising the loss function
L corresponds to optimising a complicated (perhaps non-convex) function on a highly
multidimensional space, with millions or billions of parameters. As a consequence,
naive gradient descent might not be the best-performing optimiser. Additionally, recall
that the loss L calculated for every batch is just an approximation of the global loss
in Equation 3.5. The batch size determines how accurate the computed gradient is.
Calculating the loss over all possible data points would yield the exact gradient. On
the opposite extreme, calculating the gradient on a single data point would generate
a biased gradient, and lead to a noisy gradient descent. The loss function can also
have a complex structure. In the literature, a multitude of optimisers that improve and
generalise the naive gradient descent exist. In this work, we use Adam [56]. Adam
is a first-order momentum-based optimiser. Adam uses a recursive update of the first
and second moment of the gradient to update the learnable parameters. The Adam
algorithm reads as follows:

Adam differs in two key features with respect to the naive gradient descent. Firstly,
it includes two decay constants β1 and β2 used to include information about the past
state of the optimisation into the next current step. Since typical values are β ∼ 0.9,
recent gradient values contribute more to the current step update than older ones, but
the inclusion of a momentum term allows the optimisation to potentially escape local
minima. Secondly, Adam includes a term vt to account for the second moment in the
gradient estimation. The running averages in Adam can potentially help to navigate
noise functions by smoothing the local gradient.

Most current deep learning implementations are deployed or trained using HPC in-
frastructure. This becomes a necessity when training on large datasets. A quickly
deployable way of parallelised training, which requires minimal code modification is
known as Synchronous Distributed Training. Synchronous Distributed Learning aims to

7https://www.tensorflow.org/guide/autodiff
8Note that this is purely a mathematical problem in optimisation.
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Algorithm 2 Adam optimiser
Require: α : Learning rate
Require: β1, β2: Moment decay rates
Require: f(θ): Target function
Require: θ0: Initial parameters
Require: ε: Numerical tolerance constant
m0 ← 0: Initialize first moment
v0 ← 0: Initialize second moment
t← 0: Initialize time
while θt not converged do

t← t+ 1
gt ← ∇θf(θt1): Get gradient
mt ← β1mt−1 + (1− β1)gt: Update first moment
vt ← β2vt−1 + (1− β2)g

2
t : Update second moment

mt ← mt/(1− βt
1): Correct first moment bias

vt ← vt/(1− βt
2): Correct second moment bias

θt ← θt−1 − αmt/(
√
vt + ε): Update parameters

end while

harvest the computational power of multiple machines (GPUs,...) in the training stage
by having different workers perform parallel calculations in a single batch. This can be
done, for instance, by splitting the batch and sending each part to a different worker. In
this work, we use the TensorFlow implementation tf.distribute.MirroredStrategy.
This training strategy mirrors the model and its parameters in every worker (for in-
stance, in every GPU), slices the training batch and distributes them across all workers.
Each worker then calculates the loss and gradient in the corresponding batch slices. The
gradient is then aggregated before updating the parameters and moving on to the next
batch, see Figure 3.10.

3.3 Workflow implementation: Recovering IGM

conditions from the Lyman-alpha forest

This section describes the deep learning implementation used in this work and builds on
the ideas that have already been introduced regarding machine learning. The code used
is largely based on [11] with some modifications and is available at https://github.

com/nicenustian/bh2igm and based on TensorFlow and TensorFlow Probability.
The ultimate aim is to use a Bayesian neural network to recover the IGM gas den-

sity from an input Lyman-α skewer. Note that this is essentially equivalent to invert
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GPU 1 GPU 2

CPU

Batch slice 2

Gradient slice 2

Batch slice 1

Optimizer step

Gradient slice 1

Figure 3.10: Distributed mirrored learning strategy with two workers (GPUs) and a
CPU aggregating the gradient and updating the model parameters.

Equation 1.36, which describes the Lyman-α optical depth as a function of the IGM
gas conditions. As we have already discussed in Section 2.3, we will work in the op-
tical depth-weighted space. This avoids two main potential difficulties in the analysis.
Firstly, by working in this new space, the network will not have to learn the relation
between peculiar velocities and the Lyman-α optical depth, which simplifies both the
architecture design and learning phase. Secondly, it breaks the degeneracy introduced
by peculiar velocities, since a shift in the physical space can produce the same optical
depth as a shift in the velocity space.

We specify the architecture design by the hyper-parameter list found in Table 3.1.
The global architecture that describes the number and size of the layers is specified
by two hyper-parameters. Firstly, the parameter “Layers per block” is an integer list
whose size is the number of blocks in the network and whose elements are the number
of layers in each block. Secondly, the parameter “Filters per block” is also an integer
list that specifies the number of convolutional filters of the layers for each block. If the
architecture is a simple MLP, this parameter does not have any effect. The layers are
chosen among a simple densely connected layer (MLP), a convolutional layer (ConvNet)
or a residual layer (ResNet). Every feedforward pass through a convolutional or densely
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Figure 3.11: Fiducial architecture for our Bayesian neural network trained at z = 4.4
on the Sherwood simulation suite. The fiducial parameters can be found in
Table 3.1.

connected layer is followed by a batch normalisation layer and by an activation function,
see Section 3.2.2. We use the PReLU activation function, which is a generalisation of
the ReLU activation with a learnable weight α such that:

PReLU(x;α) =

{
αx , x < 0

x , x ≥ 0
(3.21)

We append the same final block to all three potential architectures, which consists of a
flattening layer transforming the tensor being manipulated to a one-dimensional vector,
a dense layer and finally a Gaussian probabilistic layer. This final block includes the
stochastic components of the neural network (hence the name Bayesian). For each target
output density pixel, the Gaussian layer outputs a full Gaussian probability distribution
parametrised by the expected density and the standard deviation. This standard devi-
ation will later be used as the estimation for the epistemic uncertainty in the network
prediction. We illustrate the fiducial architecture in Figure 3.11.

We optimise the network hyper-parameters using OPTUNA as discussed in section 3.2.4.
Table 3.1 shows the optimised hyper-parameters and the range considered during the
grid search. Note that these values can potentially depend on the nature of the training

52



3.3 Workflow implementation: Recovering IGM conditions from the Lyman-alpha forest

Hyper-parameter Min. Max. Best value
Layers per block (int) 1 4 [1, 2, 4 ,4]

log2(Filters per block) (int) 1 5 [4, 5, 5, 5]
Number of blocks (int) 1 4 4
log2(Batch size) (int) 3 8 3

Learning rate (logs, float) 10−4 0.1 0.004937
Network (MLP, ConvNet, ResNet) ... ... ResNet

Table 3.1: Hyper-parameter grid search for the fiducial model at z = 4.4. “logs” indicates
the parameter is sampled in the log domain. “Int” and “float” mean they are
sampled as integers or floats, respectively.

dataset, and hence may vary with redshift. In Table 3.1 we present the fiducial archi-
tecture at z = 4.4. This optimisation process is automatically carried out whenever the
redshift is varied.

For each redshift, we train a different network using the Sherwood simulation suite
presented in Section 2. Recall that we consider two training datasets, SHERWOOD and
SHERWOOD THERMAL, where the latter includes variations in the thermal parameters and
reionisation history. See [32] for more details. The inclusion of thermal parameters
will lead to a more robust network when used on unseen real data, but its performance
will naturally be lower than the network trained on a single thermal history. We use
SHERWOOD for an initial model testing and SHERWOOD THERMAL for our final analysis of real
data. 80 % of the data is used for training, and the rest is used for validation purposes.
For reference, the training dataset SHERWOOD with 7 different WDM models has a total
size of ∼ 3.5 GB. We use the Raven9 HPC cluster at the Max Planck Computing and
Data Facility to train our networks. With 4 Nvidia A100 GPUs, a typical training time
is ∼ 1 hour, depending on the model’s exact architecture and number of parameters.

The network’s input consists of a Lyman-α flux skewer, and the network’s output
consists of the mean density and standard deviation at each pixel. The labelled training
data consists of individual Lyman-α flux skewers with their associated density optical
depth-weighted density field, (F, log(∆τ )). For each labelled training pair, the loss
function is taken to be the negative log-likelihood (NLL) for the normal distribution
that the network parametrises:

− logL =
1

N

∑
i

(
(Yi − Yi,pred.)

2/σ2
i,pred. + log

(
1

σ2
i,pred.

))
, (3.22)

9https://www.mpcdf.mpg.de/services/supercomputing/raven
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where the sum runs over all skewer pixels, Yi is the real density at pixel i, Yi,pred. is the
predicted expected density and σ2

i,pred. the predicted standard deviation.

The input skewers are processed as follows. Firstly, the input flux is rebinned into a
target number of pixels to match the real data that will be used. Downsampling is done
by taking the average flux over nearby pixels, while upsampling is done by appending
to every pixel a copy of itself. For the case of the SHERWOOD spectra with 20248 pixels,
the pixel scale is ∼ 1.26 km/s per pixel at z = 4.4. The flux is then convolved using a
Gaussian kernel to simulate a given instrumental resolution. In most of our analyses, the
resolution is taken to be 6 km/s, in accordance with state-of-the-art spectrographs, such
as UVES [78]. During training, the training data is concatenated and randomly shuffled
to ensure a correct mixing and representativity of the models. Lastly, we process the
re-scaled input optical depth to match the observed mean flux at the considered redshift
[41]. The training data is augmented on the fly in two ways. We first roll the input
spectra by applying translations, which helps the network learn dynamical features,
independently of their positions. We also add random uncorrelated Gaussian noise to
simulate a finite signal-to-noise ratio (SNR). The default SNR per pixel used for testing
purposes is 50. When applying our methods to real data, the network is retrained using
a noise model for each target object.

We use the Adam optimiser with fixed moment decay rates as implemented in the
TensorFlow API and a learning rate set by the Optuna grid search. The training is
evaluated using two main metrics: the loss function NLL, and the mean absolute er-
ror, MAE, defined as the Euclidean norm in Equation 3.19 with p = 1. To prevent
over-fitting, the network parameters are only updated if the NLL loss improves on the
validation split of the data. A policy to halve the learning rate if there is no loss improve-
ment in the test set for ten epochs is also included. This is the most straightforward
implementation of an adaptive learning rate. Figure 3.12 shows the evolution of the
NLL and the MAE on the validation split during training for our fiducial architecture
at z = 4.4 and the SHERWOOD suite. It is interesting to note that while the MAE is
always positive by definition, the negative values of the NLL are consistent with its
definition. Figure 3.12 demonstrates that, for our problem, the network training con-
verges in ∼ 100 − 150 epochs. Recall that we always work with log(∆τ ), which also
serves as a regularisation step with respect to the density. In Figure 3.13 we show an
example 20h−1cMpc Lyman-α validation skewer from the SHERWOOD dataset. The top
panel shows the input flux to the network. The bottom panel shows the true ∆τ density
fields, the (mean) recovered densities and the 1σ envelope predicted by the Bayesian
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Figure 3.12: Learning curve for our fiducial architecture at z = 4.4 on the SHERWOOD
dataset. The figure shows the NLL and the MAE on the validation split as
a function of the epoch.

network. Note that, in the spectral regions with large features and variations in the
flux, the predicted mean density closely follows the true field. In those regions, there
is enough physical information for the network to accurately recover ∆τ . In contrast,
in the saturated regions with low flux, the noise dominates, and the network predicts
larger uncertainties (observe, for instance, the saturated region in Figure 3.13 around
8h−1cMpc). This should be regarded as a strength of Bayesian networks since they are
able to accurately detect and make explicit situations where the predictions should not
be trusted. To minimise the mean error in regions where the network cannot make
accurate predictions, note how there is a bias towards quasi-constant mean prediction.
This is visible around 8h−1cMpc, where the true density has a steeply increasing profile,
and the prediction has an almost constant u-shaped profile. On the SHERWOOD validation
split, the network reaches a 1σ accuracy of 79%, meaning that 79% of the pixels are
correctly predicted within 1σ. Note that this is a larger accuracy than expected from
purely normally distributed densities.
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Figure 3.13: An example 20h−1cMpc Lyman-α validation skewer for the CDM and
WDM3 Sherwood models. The top panel shows the input flux to the net-
work. The bottom panel shows the true ∆τ density fields, the (mean) re-
covered densities and the 1σ envelope predicted by the Bayesian network.

3.4 Recovered field statistics and uncertainties

Once we have the machinery to recover the IGM density from a Lyman-α skewer, we
would like to use this density field information to do statistical inference on the physical
parameters of interest. In this work, since the WDM mass directly affects the matter
distribution of the Universe (see Figure 1.3) we would like to infer the WDM masses
from the recovered ∆τ field. Now, note that the exact ∆τ field of a skewer, such as
the one shown in Figure 3.13, not only depends on a set of physical parameters (WDM
mass, temperature,...) but also on the initial conditions or equivalently, the random
seed in the simulation. As a consequence, we will not compare densities on a sightline-
by-sightline basis, but rather compute and compare agregatted statistics of the fields
over multiple realisations that capture global statistical properties, and not simulation-
specific characteristics. Statistics that have been amply tested in the literature are the
Power Spectrum (PS), the Probability Distribution Function (PDF), the curvature, or
the autocorrelation function (see [38] and [79] for more details). In this work, we will
focus on the ∆τ PDF. In section 4.6.4 we will address the optimality of this choice.

We will carefully describe the statistical inference pipeline in Section 4.1 . The main
idea will be to fit the density PDF obtained from the Bayesian neural network using
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observed skewers to the PDFs from each WDM model in the SHERWOOD dataset. An
important consideration for a successful pipeline will be to compare apples to apples,
i.e., to compare statistics that have been obtained through the same process to reduce
any potential bias. For that reason, we will always work with the ML-recovered density
by our fiducial neural network, and compare the observed statistics to the model statistics
from each WDM run. The model statistics are computed over the whole simulation box
using all 5000 skewers from each run. The observed statistics are typically computed
over a much smaller number of observed sightlines. In this section, we analyse the
statistics recovered from the predicted ∆τ field by the Bayesian network, including how
to calculate their uncertainties, which will be crucial for the rest of the inference process.

3.4.1 Noisy regions and masking

Recall Figure 3.13 as the central example in this regression problem. The flux-saturated
regions where the flux is close to zero and dominated by noise have no physical infor-
mation to recover the density. Potentially, any density higher than the truth could also
produce a saturated profile. The model correctly detects these regions and produces
larger uncertainties, but the mean predictions have no physical information and should
not be considered in any posterior analysis. Hence, we will mask these regions when
comparing the model and observed ∆τ PDFs. This has the effect of modifying the shape
of the PDF by removing part of the high-density tail. We show in Figure 3.14 the model
∆τ PDFs for the SHERWOOD runs computed using the recovered density by our neural
network and explicitly highlight the effect of masking the saturated regions that have a
flux ≤ 3 1

SNR
. As can be noted, the artefact that occurs at high densities (log(∆τ ) ∼ 0.5)

disappears when masking. It can be interpreted as a bias introduced in the saturated
regions.

3.4.2 Uncertainty in the recovered statistics

When estimating uncertainties for the recovered PDF, there are two main sources to
consider.

Sampling from reconstructed density fields

Firstly, the Bayesian ML predictions have a certain uncertainty associated with them,
which transfers to the density PDF as an additional scatter. We include such uncer-
tainties by considering the predicted density field ∆τ and resampling 1000 times the
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Figure 3.14: Model ∆τ PDFs for the SHERWOOD runs computed using the recovered den-
sity by our neural network. We explicitly highlight the effect of masking
the saturated regions that have a flux ≤ 3 1

SNR
.
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Figure 3.15: An example SHERWOOD CDM skewer, together with the reconstructed ∆τ

in blue. The red field shows a resampling without including covariance
between the pixels, which generates random noise.

posterior distribution produced by the network. We do this process for every observed
skewer, compute the 1000 PDFs for each sample, and then the standard deviation be-
tween the 1000 statistics. The resampling process requires careful consideration. If we
resample for each Gaussian distribution N (µi, σi) independently at each pixel i, the
resamples are essentially Gaussian noise, as can be seen in Figure 3.15.

To generate adequate resamples, we must include the correlation between pixels and
sample from the joint distribution. We estimate such correlation matrices on the pre-
diction residuals in the SHERWOOD suite, defined as:

ri =
∆τ,i − µi

σi

(3.23)

To generate a smooth correlation matrix for the residuals, we also augment the data
by applying 1000 translations to each spectrum. We compute such correlation matrix for
the reference SHERWOOD CDM skewers, as shown in Figure 3.16, and will refer to it as Σ.
Note that the nearby pixels are correlated for a distance of ≲ 50, as the quasi-diagonal
structure of the matrix suggests. We have computed similar matrices for the rest of the
SHERWOOD models, finding very similar results. As a consequence, we use the reference
CDM correlation matrix for this resampling step in what follows.

To resample from a reconstructed ∆τ skewer by our neural network, we draw a sample
from the multivariate normal N (0,Σ). The reconstructed sample for the density field
is then taken to be µ+ σN (0,Σ), where µ is the vector of mean predictions, and σ the
vector of standard deviation predictions. Figure 3.17 shows a series of 100 draws from
the same recovered density skewer as Figure 3.15.
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Figure 3.16: The ∆τ correlation matrix Σ for the prediction SHERWOOD CDM residuals as
defined in Equation 3.23 at z = 4.4 for the fiducial trained neural network.
Each reconstructed density field has been augmented by applying 1000
translations to generate a smooth matrix.

Figure 3.17: A set of 100 draws including the correlation between nearby pixels for
a SHERWOOD CDM skewer. As opposed to Figure 3.15, the samples are
continuous and no longer show noisy behaviour.
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Intrinsic scatter in the recovered PDF

Secondly, we estimate a second contribution to the total uncertainty in the recovered
PDF by considering the fact that we have only observed a finite set of skewers, and
hence we don’t have access to the full ∆τ field. To estimate this intrinsic scatter, we
use bootstrapping [80]. Bootstrapping approximates the true distribution of the PDF
statistic by generating artificial samples from the observed data. Suppose we observed
N sightlines, reconstruct their ∆τ field and then compute the PDF. To estimate how
this PDF depends on the exact observed skewers, we draw N sightline from the set of
observed ones, potentially including repetitions. This might result in repeated sightlines.
We then compute the PDF for this new sample. We repeat this process 1000 times and
then compute the scatter in the PDF across all 1000 samples.

Bootstrapping approximates the true distribution as N → ∞. It is then reasonable
to ask whether this method is accurate when we are only observing a low number
of sightlines. To answer this, we note that the ∆τ PDF is a function of the density
value of each of the pixels, which can be considered a random variable depending on
the observations. As a consequence, the PDF is itself a random variable and has a
probability distribution. We would like to estimate this probability distribution and
verify whether bootstrapping provides a reasonable estimate.

To estimate the distribution of the PDF, let us assume that we observe a total of N
pixels, which we will consider as independent for now. Suppose that the ∆τ distribution
for each density pixel is f . We want to estimate the probability distribution p(λ|f(x), N)

that a bin of the PDF has a value λ, conditional on observing N pixels and a true
probability for a density x of f(x). Let us denote by Xi the N pixel values that are
considered random variables to be observed and start by noting that, by definition,

PDF(x) ∝
N∑
i=1

1{Xi=x} (3.24)

=⇒ P (PDF(x) = λ) = P ({Number of Xi equal to x} = Nλ) (3.25)

=

(
N

Nλ

)
f(x)Nλ(1− f(x))N−Nλ (3.26)

We have shown that the probability distribution of the PDF statistic is:

p(λ|f(x), N) ∝ Γ(N + 1)

Γ(Nλ+ 1)Γ(N −Nλ+ 1)
f(x)Nλ(1− f(x))N(1−λ) (3.27)
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Figure 3.18: Uncertainties on the ∆τ PDF estimated using bootstrapping with 1000
samples and using the standard deviation in Equation 3.27. We show the
results for 6 CDM skewers with 2048 pixels each from the SHERWOOD CDM
run.

Interestingly, and in agreement with bootstrapping, the distribution in Equation 3.27
has a mean that converges to f(x) as N → ∞ and a variance that converges to 0
as N → ∞. To compare how this exact distribution differs from the uncertainties
estimated using bootstrapping, we show in Figure 3.18 the uncertainties on the ∆τ PDF
estimated using bootstrapping with 1000 samples and using the standard deviation in
Equation 3.27. We show the results for 6 CDM skewers with 2048 pixels each. Both
uncertainties are comparable, with bootstrapping slightly underestimating the standard
deviation of Equation 3.27. However, bootstrapping includes the correlation between
nearby bins, which has not been taken into account when deriving Equation 3.27. For
those two reasons, we will consider the bootstrapping uncertainties in what follows when
estimating the intrinsic scatter of the recovered PDF.

Finally, the total uncertainties on the observed ∆τ PDF are obtained by adding in
quadrature the machine learning uncertainties and the intrinsic scatter using bootstrap-
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Figure 3.19: ∆τ PDF computed over the full simulation box (that is, using all skew-
ers) compared to the PDF computed using the 60 observed skewers in the
SHERWOOD CDM run at z = 4.4. We have used the ∆τ fields reconstructed
by the fiducial neural network and masked the flux-saturated regions. We
find that 60 skewers from the same dataset are sufficient to accurately re-
cover the PDF statistic.

ping.

To illustrate the process of recovering the PDF statistic including all the uncertainties
mentioned above, we select 60 SHERWOOD CDM skewers at z = 4.4 from the validation set
as our “observed” data. In Figure 3.19 we compare the ∆τ PDF computed over the full
simulation box (that is, using all skewers) to the PDF computed using the 60 observed
skewers. Keep in mind that we always used the ∆τ fields reconstructed by the fiducial
neural network and mask the flux-saturated regions. We find that 60 skewers from the
same dataset are sufficient to accurately recover the PDF statistic.
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3 Deep Learning the Lyman-alpha forest

3.5 Model interpretability and limitations

Deep learning models tend to have, by definition, numerous parameters. As a conse-
quence, giving an interpretation for individual model parameters is far from being a
trivial task. On top of a large number of parameters, the nonlinearities and the po-
tentially biased and incomplete datasets can lead to complex training behaviours. In
that regard, deep learning models have classically been regarded as “black-box” models.
They are often more accurate than simpler statistical models but lack explainability.
Great efforts have been recently made in understanding the learning dynamics of neu-
ral networks [81], [82], [83]. Due to the complexity of this interpretation task, here we
choose to only give a qualitative analysis of some aspects that can help gain intuition
on how the network operates internally.

3.5.1 Saliency analysis

Although many open-source libraries, such as Captum10, implement popular methods for
deep learning model visualisation and interpretation, in this work, we use TensorFlow’s
built-in differentiation capabilities. In particular, we use Automatic Differentiation to
compute the saliency score of the model, defined as the gradient of the model output
with respect to the model input. As a consequence, for every target density pixel, the
saliency score measures which flux pixel variation contributes the most to a change in
density. Saliency is a simple score that gives us insights into how the model uses flux to
reconstruct densities. Additionally, note that calculating such gradients does not require
any numerical finite difference approximation, since TensorFlow’s GradientTape class
can build an exact computational graph with all the operations performed on the input
flux. Saliency maps are a popular technique in applied science to explore deep learning
models. In fact, in many physics research articles, it tends to be the only tool used for
this purpose. This highlights the need to develop more robust and easily deployable
frameworks for deep learning models.

The saliency at density pixel i and input flux pixel j is simply

Saliency(i, j) =
∂µi

∂fj
. (3.28)

Figure 3.20 shows the saliency profile averaged over all output density pixels. This
gives a global average metric on the relevant flux pixels to predict the density at a certain

10https://github.com/pytorch/captum
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Figure 3.20: Saliency of the CDM and WDM3 Sherwood network at 8h−1cMpc Lyman-
α flux. The typical saliency “length”, that is, the typical number of pixels
from the pixel centre that are useful to predict its density is ∼ 30. Since
at redshift z = 4.4 our pixel scale on the SHERWOOD data is 1.3 km/s, we
obtain that in velocity space a window of ∼ 40 km/s is needed to recover
the density at a pixel.

pixel. The typical saliency “length”, that is, the typical number of pixels from the pixel
centre that are useful to predict its density is ∼ 30. Since at redshift z = 4.4 our pixel
scale on the SHERWOOD data is 1.3 km/s, we obtain that in velocity space a window
of ∼ 40 km/s is needed to recover the density at a pixel. This particular dynamic is
coherent with the underlying physical process, which is a strong robustness sign of our
machine learning model. In fact, for the typical IGM gas in the SHERWOOD suite, the
Lyman-α absorption cross-section profile has a typical scatter of (see Equation 1.36)
b(T ) ∼ 20 km/s.

3.5.2 Covariate shift

As we have already mentioned when discussing Figure 3.13, saturated regions lead to
larger uncertainties in the network’s predictions, reflecting the fact that noise dominates
over the physical signal. Observe again the saturated region around 7h−1cMpc and
8h−1cMpc in Figure 3.13. Both of these regions have completely different density profiles,
but the network predicts the same U-shape profile with a similar peak density. This peak
density is slightly above the mean density in the simulation box and is similar for the
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Figure 3.21: The NOTRAIN-WDM1 model predicting on a WDM1 skewer, compared to the
fiducial model trained on the whole SHERWOOD dataset. We find a clear
covariate shift effect on NOTRAIN-WDM1, which biases the recovered ∆τ field.

CDM and WDM3 models. We can interpret this as the network learning a unique mean
“high-density” value for saturated regions and the whole dataset. The way the model
predicts those mean densities based on the training dataset is, again, far from being
trivial. However, it is clear that the training data contains all the information leading to
any possible bias/characteristic in the deep learning model predictions. An important
effect regarding the available data is covariate shift. Covariate shift occurs when the
training and validation data are sampled from different distributions. Covariate shifts
can be difficult to detect and can lead to biased predictions. In this work, we try to
test the generalisation capabilities of our model by adding random noise and validation
on unseen data from multiple hydrodynamical codes with different specifications, to
make sure the model is learning the relevant physics. This is a pragmatic approach
to address covariate shifts since more formal techniques are out of the scope of this
work. Nonetheless, we are aware that an insufficient dataset can significantly degrade
performance. As an illustration of the undesirable effects of covariate shift, we retrain
the fiducial architectures on a subset of the SHERWOOD dataset where we iteratively
eliminate each one of the WDM models. We call this set of models NOTRAIN. For instance,
NOTRAIN-WDM1 has not been trained on the WDM1 data. In Figure 3.21 and Figure
3.22 we show the models NOTRAIN-WDM1 and NOTRAIN-WDM4 predicting, respectively, on
WDM1 and WDM4 skewers from the SHERWOOD dataset.

Note the clear covariate shift effect in Figure 3.21, where NOTRAIN-WDM1 has a system-
atic bias towards lower densities. In comparison, in Figure 3.22 the model NOTRAIN-WDM1
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Figure 3.22: The NOTRAIN-WDM4 model predicting on a WDM4 skewer, compared to the
fiducial model trained on the whole SHERWOOD dataset. We find that the
NOTRAIN-WDM4 predictions show no bias, since WDM4 is bracketed within
the training data.

shows no clear indication of any bias and is almost indistinguishable from the fiducial
model. In the former case, the model has to extrapolate on data generated from an
unseen model, which clearly gives an incorrect prediction. In the latter case, the model
has been trained on CDM and WDM3, so predicting on WDM4 is an interpolation task.

3.5.3 Extreme covariate shift and malicious data

In regression tasks related to computer vision, it is customary to mask certain parts of
the input to explore how the model reacts to specific features. Following this idea, we
have designed a set of malicious Lyman-α skewers that include artefacts and unnatural
features that are not present in the training dataset. Therefore, this can be considered
an extreme case of covariate shift. In Figure 3.23 we show the fiducial model predictions
for two such skewers. In the first case, we consider a fully saturated skewer with zero
flux and only a small amount of noise. This artificial spectrum could correspond to an
observation where the target quasar has been missed. Observe how the model makes
an educated guess and predicts the mean density for the whole skewer. However, the
model is very confident in the predictions and produces minimal uncertainties. This is
not correct from the physical standpoint, since any density higher than the truth can
produce a saturated flux. In the second skewer, we have complete transmission except
for a saturated absorption feature. This could correspond to an unmasked DLA system
producing a sharp absorption feature. The predictions for the pixels with complete
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3 Deep Learning the Lyman-alpha forest

Figure 3.23: Two examples of user-defined input fluxed for our fiducial neural network,
featuring examples of extreme covariate shift.

transmissions are below the mean density, and on the saturated pixels it is above the
mean density with a higher uncertainty. This is closer to a “real” absorption feature
with a more accurate prediction.

3.5.4 Model pruning

Pruning refers to the idea of eliminating certain components of a deep neural network, or
equivalently, considering a sub-network. The motivation to prune a network is generally
to reduce the number of parameters, which can improve interpretability, and allow users
to better trace the flow of information through the network. Since most deep networks
are over-parametrised, pruning can improve training while maintaining a very similar
performance to the original architecture. Pruning is an active area of research, and
efforts are being made to use domain-specific expertise to prune networks and make
informed choices about their topology [84]. In this work, we have used OPTUNA in section
3.2.4 to tune the hyperparameters of the model on the sole basis of a performance metric
function. This naturally over-parametrises the network, with connections and filters that
might be redundant. This means that there is potential room for improvement when
it comes to finding more interpretable networks with fewer parameters and more stable
training.

To illustrate how pruning can affect the performance of our model, we briefly focus on
the first convolutional layer of the architecture in Figure 3.11. In Figure 3.24 we show
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Figure 3.24: First layer activation of the convolutional filters for a trained network
with architecture [2, 2], [4, 16] for a randomly selected CDM skewer from
SHERWOOD. We find that channel 1 and 2 are highly redundant, and similarly
for channel 3 and 4.

the activation of the first 4 convolutional filters for a trained network with architecture
[2, 2], [4, 16] for a randomly selected skewer, following the notation in Table 3.1. Note
that out of the four filters, the blue and green ones are scaled versions of each other,
and similarly, the red and orange filters are also scaled versions of one another. To
test if this redundancy affects the network, we prune half of the filters in this first
layer to an architecture [2, 2], [2, 16]. Figure 3.25 shows the training NLL curve for
both architectures. As can be seen, they reach a similar performance in terms of the
NLL, but the pruned architecture has a more stable learning curve and converges in a
smoother way.

Since the unique focus of our neural network is to make accurate predictions, in the
rest of this work we keep the architectures obtained using the OPTUNA optimisation
process in Section 3.2.4. However, we have shown that the neural architectures can be
further optimised if the number of parameters or their interpretability are considered
relevant.
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Figure 3.25: Training curves for the NLL comparing the model [2, 2], [4, 16] and the
pruned architecture [2, 2], [2, 16] with half of the convolutional filters in
the first layer. Observe how the pruned architecture performs similarly to
the fiducial one, with a more stable learning curve and fewer parameters.

70



4 Constraining warm dark matter at
the density level

4.1 Inference pipeline: from Lyman-alpha skewers to

WDM constraints

In Section 3 we have given a detailed analysis of our Bayesian deep-learning algorithm
to recover IGM densities from a Lyman-α skewer. The baryonic density of the IGM is
sensitive to the WDM mass through a clear physical mechanism related to gravitational
clustering. In this section, we use the recovered IGM density fields to constrain WDM
candidates. Note that the natural observable quantity related to the Lyman-α forest
is the flux. As a consequence, an almost omnipresent choice in the literature has been
to work directly with summary quantities on the flux, which is strongly correlated with
the underlying density. Such summaries include the power spectrum (PS) [29], the
curvature [85], the probability distribution function (PDF), etc. The deep-learning
approach introduced in Section 3 allows us to directly recover the baryonic density field
along a line of sight, thus having full access to the field-level IGM properties. In this
section, we use the recovered ∆τ fields by our neural network to constraint WDM directly
at the density field level. Recall Figure 1.3 and Figure 2.7 showing how different WDM
models affect the density field. We strive to capture that difference in the WDM models
to constrain which free-streaming lengths are compatible with QSO observations. Note
that for a given line of sight, the precise value of the density field not only depends
on the WDM masses (and other possible physical parameters), but most crucially it
depends on the random density fluctuations that have seeded the gravitational collapse
process. Equivalently, in a simulation setting, the obtained densities would depend on
the seed used to initiate each simulation. This makes it infeasible to compare a given
Lyman-α skewer to a simulated one and means that we must use aggregated summaries
over multiple skewers that capture the global properties of the field. In this work, we
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4 Constraining warm dark matter at the density level

perform the inference using the density PDF as the summary statistic of choice. This is
a well-tested and robust statistic [38]. In Section 4.6.4 we give an additional argument,
based on Information Maximising Neural Networks, to support this choice of summary
statistic.

The basic working principle of the inference pipeline is to fit the observed ∆τ PDF,
with its associated uncertainties, to the corresponding ∆τ PDF produced by each WDM
model. To compare similar quantities, we always work with the recovered field by our
neural network from Section 3. Note that in the SHERWOOD suite only a finite number
of DM models are available, due to the computational cost of running this simulation.
In more detail, we only have access to the models CDM, and WDM1,2,3,4,8,12. We
smoothly and linearly interpolate the PDF by interpolating each PDF bin to generate a
∆τ PDF in the range of WDM masses from 0 to 1 KeV. Note that, since we expect the
real observations to fall close to the CDM model, and have multiple simulations close
to CDM, we expect this interpolation not to limit the inference pipeline. See Figure 2.7
again and observe how similar the PDFs for CDM and WDM3 are.

For each DM model of inverse mass m, we denote by PDF(m) the ∆τ PDF com-
puted over the recovered densities by our NN network over all available sightlines in the
SHERWOOD or SHERWOOD THERMAL datasets. We refer to this as the model PDF. Let us
denote by P̂DF the recovered PDF for a target set of (observed) skewers. Then, we fit
P̂DF to the model PDFs using a simple χ2 fit:

χ2(m) =
∑
i

(PDF(m)i − P̂DFi)
2

(σi)2
, (4.1)

where the index i refers to each PDF bin and σi are the uncertainties on the observed
data. If the data is independently and normally distributed, the quantity in Equation
4.1 follows a χ2 distribution [86]. The model that minimises the quantity is the best-
fit model, on which we can compute uncertainties and obtain a confidence region of
compatible models with the observed data. Since we are only fitting a single parameter
model, the 1 and 2-sigma confidence regions on the WDM mass are given, respectively,
by the boundaries of

χ2(m)− χ2
min = 1, 4, (4.2)

where χ2
min is the best-fit χ2 value. In the following, we will be interested in the 2σ confi-

dence regions. This region can be interpreted as the set of WDM models that guarantee
to contain the “true” model with a 95% probability. In the current literature, WDM
constraints are often reported as the 2σ upper limit, where the lower limit typically
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4.2 Inference testing on simulated Sherwood spectra under realistic observational conditions

corresponds to CDM. The current more stringent 2σ WDM limit constraints are ∼ 3

KeV, see [29] and [32]. Note that this fitting procedure is non-Bayesian, in the sense
that we don’t include any prior knowledge or use Bayes’ theorem. Again, this procedure
is compared in Section 4.6.4 to an IMNN Bayesian fit, leading to similar results.

4.2 Inference testing on simulated Sherwood spectra

under realistic observational conditions

In this first section, we run our inference pipeline from Section 4 using a set of toy
observed skewers. More precisely, we use our neural network trained on different subsets
of the SHERWOOD dataset and use validation SHERWOOD skewers as the “observed” skewers.

4.2.1 Untrained DM models

We begin by testing the robustness interpolation and extrapolation capabilities of the
neural networks by considering the NOTRAIN models that are trained on data that it-
eratively excludes each one of the WDM models. For each one of those trained neural
networks, for instance, NOTRAINWDM4 (which was not trained on WDM4), we predict on
the WDM4 sightlines, compute the recovered ∆τ with its uncertainties according to Sec-
tion 3.4 and run the inference pipeline. We also perform additional variations by running
the pipeline only on the PDF bins whose value is greater than a fixed constant. This
has the effect of only fitting the peak of the PDF and neglecting the low-information
tails. Figure 4.1 summarises these inference tests. Each plot corresponds to a different
fit combining predictions from each NOTRAIN model with each of the masks applied to
the PDF when fitting. The light and dark blue regions correspond to the 1 and 2 sigma
confidence regions. The red line corresponds to the true DM model mass and the black
line to the best-fit model that minimises the χ2. The blue curve is the χ2 metric. Note
that we are using all 5000 sightlines on the inference step. This is not a realistic sample
size, but rather a test of the inter(extra)polation performance of the pipeline.

Recall that when tested on WDM2,3,4 the models are interpolating. Observe that
as a consequence, the recovered mass is consistently recovered within the 1σ region. In
contrast, with the models CDM and WDM1, the neural networks have to extrapolate on
unseen DM models. As expected, the recovered model mass might not even be included
in the 2σ regions, meaning that the pipeline fails to correctly recover the true mass if
we extrapolate models. This does not affect our prediction with real data, since, as we
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Figure 4.1: Inference results on the NOTRAIN neural netoworks. Each plot corresponds
to a different fit combining predictions from each NOTRAIN model with each
of the masks applied to the PDF when fitting. The light and dark blue
regions correspond to the 1 and 2 sigma confidence regions. The red line
corresponds to the true DM model mass and the black line to the best-fit
model that minimises the χ2. The blue curve is the χ2 metric. Note that we
are using all 5000 sightlines on the inference step.
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Figure 4.2: Inference predictions on WDM3 for different combinations of SNR and num-
ber of targets N. We find that increasing the target number leads to slightly
tighter confidence regions while increasing the SNR leads to more accurate
constraints. Most crucially, observe how the true model mass is, in both
cases, recovered within 2σ.

have already mentioned, current WDM constraints favour a lower mass limit of ∼ 3

KeV. Lastly, observe in Figure 4.1 that the mask applied on the horizontal axis does not
significantly affect the recovered masses.

4.2.2 Realistic observational conditions

In this section, we explore the effect of realistic observational conditions, such as the
number of observed quasars, the signal-to-noise ratio (SNR), or the instrumental res-
olution, in the inferred DM constraints. For that purpose, we use typical parameters
for the Ultraviolet and Visual Echelle Spectrograph (UVES) on the European Southern
Observatory’s Very Large Telescope [87]. We consider a spectral resolution of 6 km/s
per pixel, variable SNR in the range 20 − 30 and a variable number of targets in the
range 30− 40. Note that the skewers in the SHERWOOD dataset are 20h−1cMpc in length,
while the spectral range in the UVES instrument expands multiple times that range. In
particular, since measurements can extend up to redshift differences ∆z ∼ 1, we assume
that each observed spectrum can be decomposed into ∼ 15 of our SHERWOOD skewers,
with the caveat that they would not all be at the same redshift.

75



4 Constraining warm dark matter at the density level

Figure 4.3: The figure shows 100 different χ2 fits on 450 SHERWOOD CDM skerwers and
the 2σ constraints distribution as we vary the exact obsserved draw.

A common compromise in an observational program with a fixed observational time
is between the number of targets and exposure time per target, which determines the
SNR. In Figure 4.2 we show how prioritising SNR or the number of targets affects
the inferred WDM masses on the WDM3 model. In general, we find that increasing
the target number leads to slightly tighter confidence regions while increasing the SNR
leads to more accurate constraints. Most crucially, observe how the true model mass is,
in both cases, recovered within 2σ.

We now evaluate the constraining power of the approach developed in this work1.
To that end, we assume CDM to be the true DM model and use our fiducial neural
network trained on SHERWOOD. We then draw 450 simulated SHERWOOD CDM skewers,
corresponding to 30 observed UVES spectra, post-process them with a resolution of
6 km/s and a binning scale of 1.26 km/s per pixel, add random Gaussian noise with
SNR = 30 and use them to run our inference pipeline from Section 4. Since the fit
depends on the exact draw of “observed” skewers, we repeat this process 100 times with
a random draw each time to obtain the 2σ limit distribution.

Figure 4.3 shows the distribution of 2σ limits and the mean 2σ constraint produced
by this process. The mean 2σ constraint that we report for the inverse mass is ∼ 0.12

1This forecast was made as part of a proposed observational campaign for Gemini, which has recently
been accepted.
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Figure 4.4: An example observed ∆τ PDF recovered using 450 simulated CDM skewers
and its uncertainties in black, plotted against the model CDM PDF, which
is the best-fit model in the χ2 test.

KeV−1, or ∼ 8.3 KeV for the WDM model mass. Again, recall that in this section we
are using simulated data.

To confirm that the fitting process works as expected, we plot in Figure 4.4 the best
fit PDF, which corresponds to the CDM model according to Figure 4.3 and an example
recovered PDF from a set of 450 observed skewers. Recall that the uncertainties in the
recovered PDF include the sample scatter using bootstrapping as well as the machine
learning uncertainties, as we have discussed in Section 3.4. As expected, the observed
PDF is within a 2σ distance of the model CDM PDF.

In Figure 4.5 we summarise in black the current 2σ state-of-the-art constraint in the
literature, using a non-ML approach. In orange, we compare the forecasted constraints
from the non-machine learning approach in [32] to our approach in an equivalent dataset
to the one used in Section 4.2.2. Compared to current limits, our forecasted constraint
is a twofold improvement, from ∼ 4 to ∼ 8 KeV. On the same dataset, we forecast our
machine learning technique to match the approach in [32]. As a significant caveat, note
that the work in [32] is a joint analysis not only on WDM but also on thermal parameters
of the IGM, cosmological parameters, etc. The aforementioned paper encompasses a
larger number of parameters with a more complex and refined approach than this work.
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Figure 4.5: Summary 2σ relic WDM constraints based on [32] compared to the forecast
obtained in this work. Recall that this forecast has been obtained using
simulated data from the SHERWOOD CDM run, as explained in Section 4.2.2.

4.3 Inference on alternative hydrodynamical codes

In this section, we test our inference pipeline on Nyx, a different hydrodynamical code.
We start by describing broadly the differences between the Nyx run used and the Sher-
wood simulations, and then we use our fiducial neural network trained on the SHERWOOD

THERMAL suite to recover the Nyx densities and obtain the corresponding constraints.

4.3.1 The Nyx code

Nyx [88] is an N-body and gas dynamics code for large-scale cosmological simulations.
Nyx uses Adaptive Mesh refinement (AMR) in time and space based on the Eulerian
formulation of hydrodynamics, as opposed to the Lagrangian formulation used in the
GADGET code employed by the Sherwood simulations. We expect Sherwood and Nyx
runs to intrinsically show non-physical differences related to the different hydrodynam-
ical solvers.

In the Nyx code, dark matter is modelled as discrete Lagrangian particles, allowing
the code to follow their evolution under gravity effectively. The evolution of its phase
space distribution f is given by the collisionless Boltzmann equation

∂f

∂t
+

1

ma2
p · ∇f −m∇ϕ · ∂f

∂p
= 0 (4.3)

where m and p are mass and momentum and ϕ is the gravitational potential. a is
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Figure 4.6: A typical Lyman-α skewer obtained from the Nyx runs with zre = 6 at
z = 4.4.

the scale factor, obtained by using a second-order Runge-Kutta solver. Nyx solves this
phase space evolution of f by sampling its distribution and evolving the particles as an
N-body system. The gravitational potential is obtained by solving the Poisson equation

∇2ϕ(x, t) =
4πG

a
(ρb + ρdm − ρ0) (4.4)

where ρ0 is the mean density, ρb the baryonic density and ρdm the dark matter density.
Dark matter particles are gravitationally coupled to a baryonic fluid, which is treated as
an inviscid ideal gas. The gas is described by a state vector U = (ρb, aρbU, a

2ρbE, a2ρbe)

where U is the peculiar proper baryonic velocity, e the internal energy, and E the total
energy. The hydrodynamical equations are approximated by a Riemann solver and can
be written in the form

∂U

∂t
= −∇ · F+ Se + Sg + SHC , (4.5)

where F is the flux vector, Sg the gravity source term, SHC the heating and cooling
term, and Se the internal energy flux.

In the rest of this section, we consider 3 Nyx runs at z = 4.4 using CDM and
20h−1cMpc boxes. The 3 runs are different in the different reionisation history and
are labelled by the end of reionisation redshifts of zre = 6, 7, 8. Each skewer has 1024
pixels. Figure 4.6 shows an example Lyman-α skewer for the Nyx run with zre = 6.

Since we want to test our inference pipeline, in this test we want to be as agnostic as
possible about the nature of our “observed” Nyx spectra. If real data is observed, we
would, a priori, have no information on the exact thermal history that has led to the
observed field. A similar situation occurs with the Nyx runs. Our SHERWOOD THERMAL

dataset constrains thermal models, but we have a priori no guarantee that they match
the Nyx runs that we are analysing. In fact, we know that this is not the case. To
visually explore the difference between the Nyx and SHERWOOD THERMAL runs, we plot
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Figure 4.7: The 2D distribution of pixels in the temperature-density plane comparing
the Nyx CDM run with zre = 6 to the SHERWOOD THERMAL CDM runs. The
top panel shows the 95% contours in red and black colours. The bottom
panel shows the temperature distribution at the mean density value. As can
be observed, the Nyx does not fit any of the runs in our training dataset.

the 2D distribution of pixels in the temperature-density plane. We show the result in
Figure 4.7, comparing the Nyx CDM run zre = 6 to the SHERWOOD THERMAL CDM runs.
The top panel shows the 95% contours in red and black colours. The bottom panel
shows the temperature distribution at the mean density value. As can be observed, Nyx
does not fit exactly any of the runs in our training dataset.

4.3.2 Inference test on Nyx Lyman-alpha skewers

We begin by evaluating the performance of our fiducial neural network with frozen
weights trained on SHERWOOD THERMAL when predicting on skewers generated by the
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Nyx code. In Figure 4.9 we show a violin plot with the 1σ residual distribution as
defined in Equation 3.23. Values in the range [−1, 1] correspond to pixels that have
been successfully recovered within a 1σ accuracy. Observe how the models with earlier
reionization (zre = 7 and zre = 8), which have lower temperatures, have a higher re-
covery rate. This is likely because our training data set contains more WDM models
close to CDM, and we know that high WDM masses and low temperate have a similar
effect on the Lyman-α forest. In general, we note that the ≥ 75% of the pixels are
correctly recovered at 1σ. Even if the performance is slightly degraded compared to the
SHERWOOD THERMAL validation, as expected, this is a strong indication that the
neural network has learnt the relevant physical relations and not potential simulation-
specific correlations. In Figure 4.8 we show the reconstructed ∆τ density field by the
fiducial neural network trained on the SHERWOOD THERMAL data at z = 4.4 on a Nyx run.
The skewer corresponds to the CDM Nyx run with zre = 6.

Figure 4.8: Reconstructed ∆τ density field by the fiducial neural network trained on the
SHERWOOD THERMAL data at z = 4.4 on a Nyx run. The skewer corresponds
to the CDM Nyx run with zre = 6.

We then run the same inference pipeline for the zre = 6 model as we did in Section
4.2.2 with a single major difference. Since we know that the Nyx runs do not fit any of our
thermal models (and the same circumstance will occur when using real observations), we
need to utilise the fiducial neural network trained on multiple thermal modes, SHERWOOD
THERMAL. Additionally, when fitting the recovered ∆τ PDF to each model PDF, we will
have 3 different χ2 curves for each one of the thermal models {ref, hot, cold}. To avoid
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4 Constraining warm dark matter at the density level

Figure 4.9: Violin plot with the 1σ residues distribution as defined in Equation 3.23.
Values in the range [−1, 1] correspond to pixels that have been successfully
recovered within a 1σ accuracy. Observer how the models with earlier reion-
ization (zre = 7 and zre = 8), which have lower temperatures, have a higher
recovery rate. This is likely because our training data set contains more
WDM models close to CDM, and we know that high WDM masses and low
temperate have a degenerate effect on the Lyman-α forest. In general, we
note that the ≥ 75% of the pixels are correctly recovered.

a joint optimization problem and constraining the thermal history on top of the WDM
mass (which is outside the scope of this work, and also unrealistic since we are not using
a fine thermal model grid), we will select the thermal model that minimises the χ2 value,
that is

mint,m χ2(t,m), (4.6)

where t ∈ {ref, hot, cold} and m labels the continously interpolatted inverse warm dark
matter mass. We compute χ2(t,m) and find that the ref and hot model produce similar
χ2 values, while the cold model has χ2 ∼ 1000, as expected from Figure 4.7. Both the
ref and hot models produce a similar 2σ lower bound on the WDM mass: mWDM ≳ 10

KeV. Compared to Section 4.2.2, the results are fairly similar, showcasing the robustness
of our approach.

82



4.4 WDM constraints from SQUAD DR1 observational data

Table 4.1: List of the SQUAD DR1 sightlines used, see [87] for the reduction details,
together with their emission redshift and the average continuum SNR. All
sightlines are 20h−1cMpc and centered at z = 4.4.

SQUAD DR1 name zem. SNR

J004054 4.976 33
J021043 4.65 25
J025019 4.77 12
J030722 4.728 50
J033829 5.032 14
J145147 4.763 100

4.4 WDM constraints from SQUAD DR1

observational data

We begin applying our density recovery and WDM mass inference pipeline to a set of
6 observed quasar sightlines from the SQUAD DR1 survey [87]. SQUAD DR1 includes
467 fully reduced quasar spectra in the range 0 ≤ z ≤ 5, together with the open-source
software used in the reductions. Since we are working with observational data, we
will always train the model with the complete SHERWOOD THERMAL dataset that includes
varied thermal histories and WDM masses. Note that since we are not trying to constrain
the thermal history (or other parameters that can affect the Lyman-α forest), we should
ideally use a training set that includes as much variation as possible to make sure the
neural network can perform in a scenario where we do not know the true thermal history.

Our SQUAD DR1 data consists of 6 Lyman-α sightlines of size 20h−1cMpc with varied
SNR (see Table 4.1), observed with the Ultraviolet and Visual Echelle Spectrograph
(UVES) on the European Southern Observatory’s Very Large Telescope, which has an
average resolution of FWHM ≈ 6km s−1. We consider sightlines centred at z = 4.4 for
this specific application. Since each quasar has its own noise level, we retrain the same
fiducial architecture with the corresponding noise level before the prediction step.

We are then set to obtain the recovered density fields for each sightline. Figure 4.10
shows all our SQUAD DR1 skewers together with the recovered ∆τ field.

We now compute the χ2(t,m) for all 3 thermal models, which are minimised for the
respective CDM run as expected, and find that the thermal model producing a minimal
χ2 is the cold model. In Figure 4.11 we show, in the left panel, all 3 χ2 curves as a
function of the WDM mass. The right panel shows the recovered ∆τ PDF from the
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4 Constraining warm dark matter at the density level

Figure 4.10: All 6 sightlines from the SQUAD DR1 sample in Table 4.1. As can be seen,
the noise levels vary, depending on the exposure time to the target. All
sightlines are 20h−1cMpc and centered at z = 4.4. We show the recovered
density field by our fiducial architecture trained on SHERWOOD THERMAL and
retrained with the noise specifications of each target.
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4.5 WDM constraints from GHOST observed spectrum

Figure 4.11: In the left panel, we show all 3 χ2 curves as a function of the WDM mass,
together with the 1, 2σ confidence regions. The right panel shows the recov-
ered ∆τ PDF from the SQUAD DR1 sample with the symmetric uncertainty
envelop, together with the best-fit model, corresponding to the CDM cold
SHERWOOD THERMAL model.

SQUAD DR1 sample together with the best-fit model, corresponding to the CDM cold
SHERWOOD THERMAL model. Using the best-fit thermal model, we find a lower bound
on the WDM mass of mWDM ≳ 3.8 KeV. In Table 4.2 we compare and discuss this
lower bound to the current state-of-the-art limits in the literature obtained through the
Lyman−α forest power spectrum.

4.5 WDM constraints from GHOST observed

spectrum

We now consider a Lyman-α skewer obtained from the GHOST instrument, which corre-
sponds to the ultra-luminous quasar J0306+1853 [89] with emission redshift z = 5.363,
see Figure 4.12. For this spectrum, we have a continuum reconstruction in the range
[971, 1210] Å in the emission rest frame, with a resolution of FWHM∼ 10 km/s. For
this target, we use the Lyman-α forest in the range 4.5 ≤ z ≤ 4.9. In the case of lower
redshifts, the Lyman-β forest would begin to overlap with the Lyman-α forest, while for
higher redshifts, a Damped Lyman-α system (DLA) at ∼ 1150 Å occurs, caused by an
intervening galaxy at z ∼ 5.02. We extract skewers of length 20h−1cMpc and consider
them to be independent to run the neural network predictions. In total, we obtained 10
such sightlines that now have a variable number of pixels in the range 567 − 603. We
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Figure 4.12: The GHOST spectrum for J0306+1853 [89]. The red curve shows the recon-
structed continuum together with 1σ uncertainties, obtained with a PCA
technique based on the spectrum to the right side of the Lyman-α line. Ob-
serve the DLA at ∼ 1150 Å, which we mask when analysing the Lyman-α
forest.

normalise the flux to the continuum emission obtained with a PCA technique based on
the spectrum to the right side of the Lyman-α line [62], [90]. We then follow [35] and
apply a continuum correction factor Ccorr ≈ 0.8 to match the continuum normalisation
used in the SHERWOOD suite. Note that this step was not needed when working with the
SQUAD DR1 data, since there the flux was normalised to the peaks.

To recover the ∆τ field from such skewers, we retrain our Bayesian neural network
with the specifications of each skewer. We use the closest redshift snapshot available
from the SHERWOOD suite, which are [4.5, 4.6, 4.7, 4.8, 4.9], a resolution of FWHM= 10

km/s and SNR= 50. Figure 4.13 shows all 10 20h−1cMpc portions of the spectrum
together with the recovered density fields. We split the original spectrum into 10 such
skewers of the same length as the ones of the Sherwood dataset, and consider them to
be independent. Note that the skewers have a different number of pixels.

We apply our WDM inference pipeline to the 10 segments of the J0306+1853 spec-
trum. We would like to now combine the reconstructed ∆τ fields at different redshifts.
Since the properties of the fields change with redshift, at each redshift we compute the
χ2 metric between the reconstructed ∆τ fields and the SHERWOOD model PDFs. Then,
we compute the mean χ2 across redshifts and use it as the final χ2 on which to obtain
the WDM particle mass constraints.

Figure 4.14 shows the mean χ2 across all redshifts [4.5, 4.6, 4.7, 4.8, 4.9] for all three
thermal models, as a function of the WDM particle mass. As expected, the χ2 is
minimised for the CDM model within each thermal history, and the best-fit thermal
model is the SHERWOOD CDM coldf run. The corresponding 2σ constraint, displayed in
blue, on the WDM mass is mWDM ≳ 3.9 KeV at 2σ confidence.

For reference and completeness, in Figure 4.15 we show the GHOST reconstructed
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Figure 4.13: All 20h−1cMpc portions of the J0306+1853 spectrum together with the re-
covered density field. We split the original spectrum into 10 such skewers of
the same length as the ones of the SHERWOOD THERMAL dataset, and consider
them independent. For each skewer, we show the closest redshift available
in the SHERWOOD suite on which the neural network has been trained to
obtain the predictions. 87



4 Constraining warm dark matter at the density level

Figure 4.14: The final χ2 metric for our GHOST sample, consisting of 10 skewers in the
redshifts [4.5, 4.6, 4.7, 4.8, 4.9]. The χ2 shown is the mean across the χ2 for
each redshift.

∆τ PDF at z = 4.9 obtained from two 20h−1cMpc skewers compared to the best fit
SHERWOOD ref CDM at z = 4.9. We find a good agreement between the model and
observed PDF, even when only two skewers are used at each redshift.

In Table 4.2 we list the current state-of-the-art 2σ lower bounds on mWDM thermal
relics constraints in the literature obtained from the Lyman-α power spectrum. The
previous efforts are based on a Bayesian inference framework to compare the observed
power spectrum with the one obtained from simulated data. In contrast, in our work,
we do the inference directly on the non-observable density field level. The main theme
in [32] and [29] is to use a larger and finer grid of parameters to run the simulations.
Such grids not only include WDM mass variations but also changes in the cosmological
parameters and the reionisation history obtained by varying the photoionisation rates.
Then, the authors use a Gaussian likelihood that includes the covariance matrix of the
observed Lyman-α power spectrum. The parameter grid is linearly interpolated for
values of the parameter where no simulations were done. The authors use a Markov
Chain Monte Carlo approach to sample the posterior for the parameters of interest, and
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Figure 4.15: The GHOST reconstructed ∆τ PDF at z = 4.9 obtained from two
20h−1cMpc skewers compared to the best fit SHERWOOD cold CDM at
z = 4.9. We find a good agreement between the model and observed PDF,
even when only two skewers are used at each redshift.

then marginalise to obtain mWDM bounds. The resulting bounds produced in our work
are comparable to previous efforts but with the advantage of requiring substantially less
observational data. For reference, in [32], the constraints are obtained from 15 spectra
measured along 327h−1cMpc, while our GHOST data consists of 10 20h−1cMpc skewers,
corresponding to 24 times less observed data needed. The tightening of the constraint
from the SQUAD DR1 sample to the GHOST sample is also expected since the latter
is a larger sample.

4.6 Comparison of the inference pipeline against

Information Maximising Neural Networks

The inference pipeline presented so far in this section is based on a simple χ2 fit of
the ∆τ recovered PDFs from our fiducial NN model. This pipeline relies on a series of
contingent choices, most notably the use of the density PDFs as the summary statistics
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Table 4.2: List of current state-of-the-art 2σ lower bounds on mWDM thermal relics con-
straints in the literature obtained from the Lyman-α power spectrum. We
compare them to the results of this work, obtained doing inference directly
at the density field level recovered by our Bayesian neural network. We also
show the total observed path length used to obtain the results, highlighting
the efficiency of our novel method.

Source mWDM[KeV] Path length [h−1cMpc]

Iršič et al. (2024) [32] > 4.1 ∼ 4800
Villasenor et al. (2023) [29] > 3.1 ∼ 7300

This work (SQUAD DR1 sample) > 3.8 120
This work (GHOST spectrum) > 3.9 200

of the fields. In this section, we explore, in an agnostic way, the possibility of using
other summaries different from the ∆τ PDFs to perform the inference (note that other
summaries such as the density power spectrum, curvature, etc., could potentially be
used). More concretely, we will introduce Information Maximising Neural Networks
(IMNNs) and use them to perform the inference within a Bayesian framework. We then
compare the results of this procedure with the inference pipeline discussed in Section 4.

4.6.1 Information Maximising Neural Networks

Information Maximising Neural Networks aim at obtaining optimal summaries of data
[91]. Neural networks are used to parametrise these summaries in an agnostic way
by maximising the information of the summaries concerning the model parameters of
interest.

Consider a data-generating procedure depending on some model parameters θ, gener-
ating data realisations di(θ) where i labels a realisation or initial seed of the simulation.
We want to obtain a function f : d 7→ x that maps each simulation to a summary vector
of the same size as θ. This is, essentially, a compression algorithm. IMNNs work by
transforming the original likelihood of the data, which is a priori not known, into the
Gaussian form

−2 lnL (x|θ) = (x− µ (θ))T C−1 (x− µ (θ)) , (4.7)

where C is the covariance matrix of the calculated summaries with a set of ns simula-
tions, and µ is the summary mean depending on the model parameters. The information
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of the observed summaries with respect to θ is then the Fisher information matrix [92]:

Fαβ = −E

[
∂2

∂θα∂θβ
logL(x; θ)

∣∣∣∣θ] = ∂µ

∂θα
C−1 ∂µ

∂θβ
, (4.8)

whose determinant we denote as |F |. The goal is to obtain summaries that maximise
the Fisher information while maintaining a minimum covariance condition to generate
independent summaries. The summaries produced by the network can then be used to
perform inference on them. Since the Fisher information is a quantity that depends on
the model parameters θ, the quantity in Equation 4.8 needs to be evaluated at some
fiducial model parameters in order to obtain a numerical result.

IMNNs have been successfully leveraged by the IGM community. Recent papers have
explored the possibility of using them to perform IGM thermal parameter inference from
Lyman-α skewers, see [93] for instance, where authors find IMNNs to yield tighter and
more robust constraints than classical Markov Chain Monte Carlo approaches. Despite
these promising results, many challenges arise when using IMNNs on real data, primarily
related to the correct identification and interpretation of model parameters.

4.6.2 IMNN training and non-linear summaries

In this section, we consider a simple MLP architecture with linear layers followed by
PReLU(α) activation functions and a dropout layer that randomly (with probability p)
sets to 0 any layer weight during each epoch to prevent over-fitting. The network takes
as input a simulated data vector d and produces a summary vector x of the same size
and the parameter vector θ. We use the Adam optimiser to maximise |F| by minimising
the following loss function

LIMNN = − log(|F |) + λ
N

N + exp(−N )
N , (4.9)

where N = ||C − I||+ ||C−1 − I|| measures the deviation from independent summaries
and λ is a coupling constant. In Equation 4.9, the second term sets a scale for the
Fisher information by producing summaries whose covariance approaches the identity
matrix. Once this is achieved, the term containing the exponential factor vanishes and
the network will maximise |F |. Note that there is not a unique set of potential optimal
summaries. In fact, any bijective function of a sufficient statistic for a certain likelihood
is also a sufficient statistic.

For each parameter update in the training procedure, we generate a batch of data
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at the fiducial parameters θf . The derivatives in Equation 4.8 are numerically approxi-
mated with finite differences by running simulations at parameters θf ±∆θα, where ∆θα

is a small parameter variation, and then calculating

∂x

∂θα
=

x(d(θf +∆θα))− x(d(θf −∆θα))

2∆θα
. (4.10)

We then calculate C, the covariance of the summaries at fiducial parameters, and use
it to compute the Fisher information in Equation 4.8 and the loss function in Equation
4.9. Note that, since the covariance matrix and the derivative in the Fisher informa-
tion matrix are computed at the data summaries, they implicitly depend on the NN
parameters.

4.6.3 Summarising a Gaussian signal

We implement IMNNs using Pytorch2, a deep-learning Python framework. We test
the implementation first by exploring its behaviour on a toy model, where we generate
random samples from a Gaussian distribution N (µ, σ). The sufficient statistic for the
model parameters θ = (µ, σ) are, in this case, the sample mean and standard deviation:

µ̂ =
1

nd

∑
di σ̂2 =

1

nd − 1

∑
(di − µ̂)2. (4.11)

Note that the statistic for σ is non-linear. For this example, we select fiducial param-
eters θf = (µ = 0, σ = 1) and ∆θ = (0.1, 0.1) and generate random fields with 100
pixels. In total, 5000 fields are generated for each parameter set, including a validation
dataset. Note that testing the network performance in the validation dataset is crucial
in performing early stopping during the training process. Indeed, since the training
dataset is limited, it will contain spurious correlations that the network will use to infer
a higher information than expected. By stopping the training when the network in-
formation on the validation set saturates, we can avoid this problem. We use a simple
architecture, with layers [128, 128, 128, 2], learning rate of 0.001, dropout rate of p = 0.5,
and batch size of 500. Observe the training evolution in Figure 4.16, where we show |F |
and ||C − I||+ ||C + I|| as a function of the epoch for the training and validation sets.
As can be seen, the validation information quickly saturates in ∼ 100 epochs, and then
slowly decreases as the network over-fits.

To better interpret the network output and to understand its behaviour, we generate

2https://pytorch.org
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Figure 4.16: |F | and ||C − I|| + ||C−1 − I|| as a function of the epoch for the training
and validation sets during the training of the IMNN on a normal field. The
goal is to find summaries to optimally extract information about the mean
and variance of the field.

samples of the same size with the zero mean, but a standard deviation randomly sampled
from (0, 12). We then compute the exact statistic (the sample standard deviation) and
plot it against the second IMNN summary output. The result is shown in Figure 4.17.
Observe that the exact statistic in the x-axis is highly correlated to the network summary
in the y-axis. Since the relation between the two quantities is clearly bijective, the model
has successfully learnt to extract all the possible information for the field covariance.
The natural scatter is due to having a simple NN model.

Note that the network has not seen any normal field with such variances σ ∈ (0, 12)

during training, yet it can extract the correct summary. This is of crucial importance
since it means that we could use the IMNN summaries to do inference on a field with
parameter values slightly different from the fiducial ones used during training.

To conclude the exploration of this toy model, we use the network to perform Bayesian
inference. We implement a simple Approximate Bayesian Computation (ABC) [94]
algorithm that obtains approximate posterior samples from a given set of prior samples
and observed data. The main idea of ABC is to construct a posterior distribution for
the parameters by rejecting some of the prior samples. In detail, ABC rejects the prior
samples that would generate data far away from the observed data. As the observed
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Figure 4.17: The IMNN summary plotted against the exact sufficient statistic for the
standard deviation using multiple samples with σ ∈ (0, 12).

data, we take 50 Gaussian fields simulated at fiducial parameter (µ = 0, σ = 1) values.
As priors, we take 5000 samples from a non-informative uniform distribution in (−5, 5)
for µ and (0, 10) for σ. The ABC rejection algorithm is described in Algorithm 3.

In Figure 4.18 we show the posterior samples and Gaussian Kernel Density Estima-
tion (KDE) for the distributions of µ and σ. The dashed vertical lines show the true
parameter values. As expected, and even with a non-informative prior, the IMNN sum-
mary contains sufficient information to produce a tight posterior around the true model
parameters. Note that the posterior scatter on the non-linear summary σ is larger than
on the linear summary µ.

4.6.4 IMNN inference results on WDM masses

We can now deploy a simple IMNN as an alternative way of constraining WDM models.
We follow Section 4.6.3 and consider a similar architecture but now with 4 dense layers
of size [512, 512, 256, 2]. As input to the NN, we consider Lyman-α flux skewers. Since
in flux space, the skewers have many simulation-specific and prominent features that
can be picked up by a NN, we work in Fourier space. More precisely, the input to the
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Algorithm 3 Approximate Bayesian Computation Rejection Algorithm
1: Input: Observed data y, threshold ϵ, number of simulations N , prior distribution

π(θ)
2: Output: Accepted parameter values {θi}Mi=1

3: Initialize M ← 0
4: for i = 1 to N do
5: Sample θ∗ from the prior distribution π(θ)
6: Simulate data y∗ from the model using θ∗

7: if d(y,y∗) ≤ ϵ then
8: Accept θ∗: θM+1 ← θ∗

9: Increment M ←M + 1
10: end if
11: end for
12: return {θi}Mi=1

Figure 4.18: Posterior samples and KDE for the ABC rejection algorithm applied to the
normal toy model, where we infer the mean and variance of a Gaussian
field with flat priors and the summaries output of an IMNN. The dashed
vertical lines show the true parameter values.
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Figure 4.19: |F | and ||C−I||+ ||C−1−I|| as a function of the epoch for the training and
validation sets during the training of the IMNN on the SHERWOOD dataset
Lyman-α skewers.

network is √
k|δF (k)|, (4.12)

where δF is the flux contrast of the skewer. We use the SHERWOOD simulation suite with
varied WDM mass to train the IMNN. Note that this means that we are assuming that
WDM is the only model parameter affecting the Lyman-α forest property. We ignore
thermal parameter variations for this demonstration. We train our model on the fiducial
CDM mass corresponding to 0 KeV−1 and use the WDM3 model corresponding to 1/3

KeV−1 to calculate the summary derivatives. The choice of WDM3 is due to the flux
skewers showing sufficient variation concerning CDM.

In Figure 4.19 we show the training progress of the IMNN as a function of the epoch.
The information extracted on the validation split quickly saturates at ∼ 250 epochs. The
network can learn a map from Lyman-α skewers in Fourier space into a one-dimensional
parameter space. Since the SHERWOOD suite has a fixed number of simulations, interpret-
ing the network output summaries is a challenging task.

In Figure 4.20a) we show the summaries of the trained IMNN for all the available
SHERWOOD Lyman-α skewers in Fourier space. Observe how the summaries show a large
scatter for every model, corresponding to the large simulation variability within each
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(a) IMNN outputs for the SHERWOOD Lyman-α
skewers.

(b) ABC WDM mass posterior for a test
of 50 observed CDM skewers. The 2σ
WDM constraint is ∼ 3 Kev.

Figure 4.20

skewer. However, the mean summaries show a clear bijective trend, manifesting that
the IMNN has learnt an informative summary. Note that this can be interpreted as the
necessity of a large number of observed samples when constraining WDM models. We
use the IMNN summaries to perform an inference test and obtain a Bayesian posterior
as follows. First, we select 50 CDM skewers from the validation dataset and obtain their
corresponding summaries by passing them through the IMNN. We now use all validation
skewers from the SHERWOOD suite and obtain their summaries. We use the ABC rejection
Algorithm 3 to generate to posterior distribution in Figure 4.20b). The 2σ limit for the
WDM mass is ∼ 3 KeV. Recall that this is a comparable constraint to the one obtained
in Section 4.4. We interpret this not only as a robustness sign of our original pipeline
involving a χ2 fit the ∆τ PDFs, but most notably as a sign that it optimally extracts
the majority of the information of the Lyman-α skewers with respect to the WDM mass
parameter.
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5 Conclusions

In this work, we have explored the potential of novel machine learning techniques to
constrain warm dark matter in the cosmological context. We began in Section 1 with
the basics of the current cosmological paradigm. We highlighted the importance of the
intergalactic medium in the formation and evolution of structures. Then, we elaborated
on how the Lyman-α forest observed on the spectra of quasars can serve as an efficient
probe of the state of the IGM, allowing for the extraction of valuable information. We
noted the relevance of dark matter in the ΛCDM model and discussed the key concepts
related to it, such as the free-streaming length. We then understood the motivation
behind considering alternative models to CDM, such as warm dark matter. Since WDM
affects the matter distribution in the IGM, the Lyman-α forest can provide information
on its nature. To understand the impact of WDM on the Lyman-α forest, we turned
our attention in Section 2 to cosmological simulations. We introduced the key points
on how such hydrodynamical simulations are performed and introduced the SHERWOOD

simulation suite, which is at the core of this work. Afterwards, we used the SHERWOOD

raw data to compute simulated Lyman-α skewers and explored the impact of peculiar
velocities and warm dark matter on its structure. For the latter, we introduced two
statistics, the power spectrum and the probability distribution function, to understand
the flux and density field from a statistical point of view.

Armed with these preliminaries, we were set to start the task of detecting the signa-
tures of WDM in the IGM density field in Section 3. This involves transforming the
Lyman-α information into density information. For this highly non-trivial task, we re-
sorted to neural networks. We motivated their growing use in astronomy and introduced
their basic working principles. Then, we focused on how to build a robust Bayesian neu-
ral network to recover the optical depth-weighted density from the Lyman-α forest flux.
Bayesian networks naturally allow for a quantification of the prediction uncertainty,
which is especially relevant when the real data is contaminated by observational effects,
such as noise. We discussed the training procedure, based on the SHERWOOD suite, and
the hyper-parameter optimisation of the neural network. We then evaluated the accu-
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racy of the trained neural network on the validation data, which is as high 79% (1σ), and
explored the accuracy of the recovered statistics on the density field and their respective
uncertainties. Lastly, we discussed some aspects of the model’s interpretability, illus-
trated by saliency maps and pruning. All in all, in Section 3 we find that it is viable to
recover the ∆τ density field from Lyman-α skewers for different WDM models and IGM
temperatures, showing that the thermal history and WDM models are not completely
degenerate.

In Section 4 we leverage our machine learning-recovered density fields to constrain
WDM. We build an efficient statistical inference pipeline that fits the recovered ∆τ

PDF to the PDF for each WDM model in the SHERWOOD suite and generates constraints
on the allowed WDM particle mass. We extensively test the robustness of this pipeline
using a set of CDM cosmological simulations obtained from Nyx, an alternative hydro-
dynamical code based on the Lagrangian framework. For a set of 450 SHERWOOD CDM
simulated skewers with SNR= 30 and a resolution of 6 km/s per pixel, we find a lower
bound on the WDM particle mass of ∼ 10 KeV at 2σ confidence. Once successfully
tested on simulated data, we apply our inference pipeline to real observational from the
UltraViolet-Visual Echelle Spectrograph at the Very Large Telescope and the Gemini
High-resolution Optical SpecTrograph at the Gemini South Telescope. The two inde-
pendent datasets consist of 6 quasar SQUAD DR1 Lyman-α forests at z = 4.4, and a
single target quasar with a forest spanning the redshift range ∼ 4.5− 4.9, respectively.
We obtain 2σ constraints of 3.8 and 3.9 KeV for both of those datasets. Our findings
are comparable to state-of-the-art techniques, but require significantly less observed
data, highlighting the efficiency of machine learning techniques in extracting informa-
tion from complex data. In particular, when using the total path length used to obtain
the constraints, we require at least 24 times less observed data compared to previous
methods. We conclude our work by testing a statistic-independent alternative approach
using Information Maximising Neural Networks to test whether our constraints can be
tightened, but find no significant improvement.

Our work aligns with the ground-breaking introduction of machine learning methods
in astronomy and astrophysics in recent years and highlights how such approaches can
be used to efficiently extract information from the Lyman-α forest. Future efforts based
on this approach can be targeted at jointly constraining multiple physical parameters of
interest besides WDM, such as the thermal parameters of the IGM, using a finner grid
of simulations. Significant improvement can also be made in designing a fully Bayesian
inference method.
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